

United States Environmental Protection Agency Office of Water 4304T EPA-820-D-24-003 December 2024

DRAFT

Supporting Information for Comparison of OPP Aquatic Life Benchmarks, OW Aquatic Life Criteria and Alternative Criteria-Related Approaches When Data are Insufficient to Develop Aquatic Life Criteria

Data supporting the analyses in Draft Comparison of Aquatic Life Protective Values Developed for Pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Clean Water Act (CWA)

> Prepared by: U.S. Environmental Protection Agency Office of Water & Office of Pesticide Programs Washington, DC

> > December 2024

Table of Contents

Table of Contentsii
1 Insecticides
1.1 Data-Rich Pesticides
1.1.1 Comparison of Aquatic Life Toxicity Values for Carbaryl: Data Sources and
Considerations1
1.1.2 Comparison of Aquatic Life Toxicity Values for Methomyl: Data Sources and
Considerations
1.1.3 Comparison of Aquatic Life Toxicity Values for Propoxur: Data Sources and
Considerations
1.1.4 Comparison of Aquatic Life Toxicity Values for Malathion: Data Sources and
Considerations
1.1.5 Comparison of Aquatic Life Toxicity Values for Diazinon: Data Sources and
Considerations
1.1.6 Comparison of Aquatic Life Toxicity Values for Chlorpyrifos: Data Sources and
Considerations
1.1.7 Comparison of Aquatic Life Toxicity Values for Dichlorvos: Data Sources and
Considerations
1.1.8 Comparison of Aquatic Life Toxicity Values for Acrolein: Data Sources and
Considerations
1.2 Data-Limited Pesticides
1.2.1 Comparison of Aquatic Life Toxicity Values for Oxamyl: Data Sources and
Considerations
1.2.2 Comparison of Aquatic Life Toxicity values for Acephate: Data Sources and
Considerations
1.2.5 Comparison of Aquatic Life Toxicity values for Dimethoate: Data Sources and
1.2.4 Comparison of Aquatia Life Toxicity Values for Decement: Data Sources and
Considerations
1.2.5 Comparison of Aquatic Life Toyicity Values for Terbufos: Data Sources and
Considerations 140
1.3 Data Insufficient Pesticides
1.3 Comparison of Aquatic Life Toxicity Values for Methamidophos: Data Sources
and Considerations 150
1.3.2 Comparison of Aquatic Life Toxicity Values for Profenofos: Data Sources and
Considerations 159
1.3.3 Comparison of Aquatic Life Toxicity Values for Fennropathrin: Data Sources
and Considerations
1.3.4 Comparison of Aquatic Life Toxicity Values for Fenbutatin Oxide: Data Sources
and Considerations
1.3.5 Comparison of Aquatic Life Toxicity Values for Methoxyfenozide: Data Sources
and Considerations
1.3.6 Comparison of Aquatic Life Toxicity Values for Norflurazon: Data Sources and
Considerations
1.3.7 Comparison of Aquatic Life Toxicity Values for Propargite: Data Sources and
Considerations

	1.3.8	Comparison of Aquatic Life Toxicity Values for Pyridaben: Data Sources and	
	Cor	siderations	206
2	Herbic	ides	213
	2.1 Da	ata-Rich Herbicides	213
	2.1.1	Comparison of Aquatic Life Toxicity Values for Atrazine: Data Sources and	
	Cor	siderations	213
	2.1.2	Comparison of Aquatic Life Toxicity Values for Propazine: Data Sources and	
	Cor	siderations	230
	2.1.3	Comparison of Aquatic Life Toxicity Values for Simazine: Data Sources and	
	Cor	siderations	240
	2.1.4	Comparison of Aquatic Life Toxicity Values for Bensulide: Data Sources and	
	Cor	siderations	254
	2.1.5	Comparison of Aquatic Life Toxicity Values for Glyphosate: Data Sources and	
	Cor	siderations	265

1 INSECTICIDES

1.1 DATA-RICH PESTICIDES

1.1.1 Comparison of Aquatic Life Toxicity Values for Carbaryl: Data Sources and Considerations

Data used in the *Draft Comparison of Aquatic Life Protective Values Developed for Pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Clean Water Act (CWA)* (U.S.EPA 2024) for carbaryl were obtained from Appendix A of the 2012 carbaryl criteria document, supplemented with additional data reported in Table L-6 of U.S. EPA (2007), the OPP pesticide effects determination document that served as the basis for the invertebrate OPP benchmark concentration.

1.1.1.1 Carbaryl Acute Toxicity Data

The EPA obtained acute data from the carbaryl Aquatic Life Criteria (ALC; 2012) and the OPP pesticide effects determination value document (2007) (See Table 1). Table L-6 of Appendix L in U.S. EPA (2007) included three LC₅₀s that were not included in Appendix A of the 2012 carbaryl ALC. These were an LC₅₀ of 26 μ g/L for *Gammarus fasciatus*, an LC₅₀ of 8 μ g/L for *Gammarus pseudolimnaeus*, and an LC₅₀ of 1,900 μ g/L for *Procambarus sp*. All three of these LC₅₀s were reported in Mayer and Ellersieck (1986). The *G. fasciatus* LC₅₀ was not included in Appendix A of the carbaryl ALC (U.S. EPA 2012) because the test chemical included excessive solvent. The *G. pseudolimnaeus* LC₅₀ was not included in Appendix A because it was a 48-hour test, not the recommended 96-hour duration of a test for this species. The *Procambarus sp*. LC₅₀ test was not used because no species was reported, and a more sensitive LC₅₀ of 1,000 μ g/L was available for the clearly specified *P. clarkii*.

The most sensitive species according to Table L-6 of U.S. EPA (2007) of the OPP pesticide effects determination was the stonefly *Pteronarcella badia*, with an LC₅₀ of 1.7 μ g/L. An LC₅₀ of 1.7 μ g/L for *P. badia* is reported in Mayer and Ellersieck (1986) and is the most sensitive value in U.S. EPA (2007). This is one of four LC₅₀s used to generate the *P. badia* Species Mean Acute Value (SMAV) of 9.163 μ g/L in the 2012 carbaryl ALC.

The final dataset consists of 61 SMAVs and 47 Genus Mean Acute Values (GMAVs), including 26 invertebrate species representing 20 invertebrate genera. Ranked SMAVs and GMAVs for all invertebrates included in this analysis are listed in Table 2 below.

OW MDR Group ^a	Species	LC50/EC50 (µg/L)	SMAV (µg/L)	GMAV (µg/L)	Reference
Н	Oligochaete worm, Lumbriculus variegatus	8,200	8,200	8,200	Bailey and Liu 1980
G	Snail (adult), Aplexa hypnorum	>27,000	>27,000	>27,00	Phipps and Holcombe 1985
G	Mussel (juvenile; 1-2 d), Anodonta imbecillis	23,700	24 632	24 632	Johnson et al. 1993
G	Mussel (juvenile; 7-10 d), Anodonta imbecillis	25,600	21,002	21,002	Johnson et al. 1993
D	Cladoceran (<24 hr), Ceriodaphnia dubia	3.06	5.958	5.958	Brooke 1990; 1991
D	Cladoceran (<12 hr), Ceriodaphnia dubia	11.6			Oris et al. 1991
D	Cladoceran (adult; 2-2.5 mm), Daphnia carinata	35	35		Santharam et al. 1976
D	Cladoceran (5 d), Daphnia magna	7.2			Lakota et al. 1981
D	Cladoceran (<24 hr), Daphnia magna	1,900	29.658	18.80	Johnson et al. 1993
D	Cladoceran (<24 hr), Daphnia magna	5.6			Sanders et al. 1983
D	Cladoceran (<24 hr), Daphnia magna	10.1			Brooke 1991
D	Cladoceran (<24 hr), Daphnia pulex	6.4	6.4		Sanders and Cope 1966
D	Cladoceran (<24 hr), Simocephalus serrulatus	11			Mayer and Ellersieck 1986
D	Cladoceran (<24 hr), Simocephalus serrulatus	8.1	8.781	8.781	Mayer and Ellersieck 1986
D	Cladoceran (<24 hr), Simocephalus serrulatus	7.6			Sanders and Cope 1966
Е	Mysid, Mysis relicta	230	230	230	Landrum and Dupuis 1990
Е	Aquatic sowbug (mature), Asellus brevicaudus	280	280	280	Johnson and Finley 1980; Mayer and Ellersieck 1986
Е	Amphipod (2 mo), Gammarus lacustris	16	18.76		Sanders 1969
Е	Amphipod (mature), Gammarus lacustris	22			Johnson and Finley 1980; Mayer and Ellersieck 1986
Е	Amphipod, Gammarus fasciatus	26	26		MRID 40098001; Mayer and Ellersieck 1986
Е	Amphipod, Gammarus pseudolimnaeus	8		16.76	MRID 40098001; Mayer and Ellersieck 1986
E	Amphipod, Gammarus pseudolimnaeus	13	9.65		Woodward and Mauck 1980
E	Amphipod (mature), Gammarus pseudolimnaeus	7	2.05		Woodward and Mauck 1980
Е	Amphipod (mature), Gammarus pseudolimnaeus	7.2			Woodward and Mauck 1980

Table 1. Acute toxicity data of carbaryl to freshwater aquatic organisms.(MDR specifies OW minimum data requirements under the Guidelines.)

OW MDR Group ^a	Species	LC50/EC50 (µg/L)	SMAV (µg/L)	GMAV (µg/L)	Reference
E	Amphipod (mature), Gammarus pseudolimnaeus	16			Sanders et al. 1983
E	Amphipod (14 d), Hyalella azteca	15.2	15.2	15.2	McNulty et al. 1999
E	Amphipod, Pontoporeia hoyi	250	250	250	Landrum and Dupuis 1990
E	Crayfish (3-4 cm), Cambarus bartoni	839.6	839.6	839.6	Simon 1982
E	Crayfish (3.9 g), Orconectes immunis	2,870	2,870	2 462	Phipps and Holcombe 1985
Е	Crayfish (5-8 cm; males), Orconectes virilis	2,112	2,112	2,402	Simon 1982
Е	Crayfish (15-38 g), Procambarus clarkii	1,000	1,000	1 378	Andreu-Moliner et al. 1986
E	Crayfish, Procambarus sp.	1,900	1,900	1,578	MRID 40098001; Mayer and Ellersieck 1986
F	Stonefly (nymph), Claassenia sabulosa	5.6	5.6	5.6	Sanders and Cope 1968
F	Stonefly (1st yr class), Isogenus sp.	2.8	3 175	3.175	Mayer and Ellersieck 1986
F	Stonefly (1st yr class), Isogenus sp.	3.6	5.175		Mayer and Ellersieck 1986
F	Stonefly (1st yr class; 15-20 mm), Pteronarcella badia	1.7			Sanders and Cope 1968
F	Stonefly (1st yr class), Pteronarcella badia	11	9.163	9.163	Woodward and Mauck 1980; Mayer and Ellersieck 1986
F	Stonefly (1st yr class), Pteronarcella badia	13			Woodward and Mauck 1980; Mayer and Ellersieck 1986
F	Stonefly (1st yr class), Pteronarcella badia	29			Woodward and Mauck 1980; Mayer and Ellersieck 1986
F	Stonefly (1st yr class), Pteronarcys californica	4.8	4.8	4.8	Sanders and Cope 1968
F	Stonefly (naiad), Skwala sp.	3.6	3.6	3.6	Johnson and Finley 1980
F	Backswimmer (adult), Notonecta undulata	200	200	200	Federle and Collins 1976
А	Apache trout (0.38-0.85 g), Oncorhynchus apache	1,540	1,540		Dwyer et al. 1995
А	Coho salmon (2.7-4.1 g), Oncorhynchus kisutch	997			Katz 1961
А	Coho salmon, Oncorhynchus kisutch	764			Macek and McAllister 1970
А	Coho salmon (1.50 g), Oncorhynchus kisutch	1,300	1.654	1,994	Post and Schroeder 1971
А	Coho salmon (1.0 g), Oncorhynchus kisutch	4,340	1,034		Johnson and Finley 1980; Mayer and Ellersieck 1986
А	Coho salmon (10.10 g), Oncorhynchus kisutch	2,700			Mayer and Ellersieck 1986
A	Coho salmon (19.1 g), Oncorhynchus kisutch	1,150			Mayer and Ellersieck 1986

OW MDR Group ^a	Species	LC50/EC50 (µg/L)	SMAV (µg/L)	GMAV (µg/L)	Reference
A	Coho salmon (4.6 g), Oncorhynchus kisutch	2,400			Mayer and Ellersieck 1986
А	Coho salmon (5.1g), Oncorhynchus kisutch	1,750			Mayer and Ellersieck 1986
А	Chinook salmon (fingerling), Oncorhynchus tshawytscha	2,400	2 5 4 1		Johnson and Finley 1980; Mayer and Ellersieck 1986
А	Chinook salmon (3.0 g), Oncorhynchus tshawytscha	2,690	2,341		Phipps and Holcombe 1985; 1990
А	Cutthroat trout (0.37 g), Oncorhynchus clarkii	1,500			Post and Schroeder 1971
А	Cutthroat trout (1.30 g), Oncorhynchus clarkii	2,169			Post and Schroeder 1971
А	Cutthroat trout (0.5 g), Oncorhynchus clarkii	7,100			Johnson and Finley 1980; Mayer and Ellersieck 1986
А	Cutthroat trout (0.6 g), Oncorhynchus clarkii	6,000			Woodward and Mauck 1980; Mayer and Ellersieck 1986
А	Cutthroat trout (0.7 g), Oncorhynchus clarkii	5,000			Woodward and Mauck 1980; Mayer and Ellersieck 1986
А	Cutthroat trout (0.6 g), Oncorhynchus clarkii	970			Woodward and Mauck 1980; Mayer and Ellersieck 1986
А	Cutthroat trout (0.5 g), Oncorhynchus clarkii	3,950	3,300		Woodward and Mauck 1980; Mayer and Ellersieck 1986
А	Cutthroat trout (0.5 g), Oncorhynchus clarkii	6,800			Mayer and Ellersieck 1986
А	Cutthroat trout (0.9 g), Oncorhynchus clarkii	6,700			Mayer and Ellersieck 1986
А	Cutthroat trout, Oncorhynchus clarkii	3,950			Woodward and Mauck 1980
Α	Greenback cutthroat trout (0.31 g), Oncorhynchus clarkii stomias	1,550			Dwyer et al. 1995
А	Lahontan cutthroat trout (0.34- 0.57 g), Oncorhynchus clarkii henshawi	2,250			Dwyer et al. 1995
А	Rainbow trout (3.2 g), Oncorhynchus mykiss	1,350			Katz 1961
А	Rainbow trout, Oncorhynchus mykiss	4,340			Macek and McAllister 1970
А	Rainbow trout (1.24 g), Oncorhynchus mykiss	1,470			Post and Schroeder 1971
A	Rainbow trout (1.5 g), Oncorhynchus mykiss	1,950			Johnson and Finley 1980; Mayer and Ellersieck 1986;
А	Rainbow trout, Oncorhynchus mykiss	2,200	1,476		Sanders et al. 1983
A	Rainbow trout, Oncorhynchus mykiss	2,800			Sanders et al. 1983
А	Rainbow trout, Oncorhynchus mykiss	1,100			Sanders et al. 1983
А	Rainbow trout, Oncorhynchus mykiss	800			Sanders et al. 1983
А	Rainbow trout, Oncorhynchus mykiss	1,500			Sanders et al. 1983

OW MDR Group ^a	Species	LC50/EC50 (µg/L)	SMAV (µg/L)	GMAV (µg/L)	Reference
A	Rainbow trout, Oncorhynchus mykiss	900			Sanders et al. 1983
А	Rainbow trout, Oncorhynchus mykiss	800			Sanders et al. 1983
А	Rainbow trout (1.0 g), Oncorhynchus mykiss	935			Marking et al. 1984
А	Rainbow trout (1.0 g), Oncorhynchus mykiss	1,000			Marking et al. 1984
А	Rainbow trout (1.0 g), Oncorhynchus mykiss	1,400			Marking et al. 1984
А	Rainbow trout (1.0 g), Oncorhynchus mykiss	1,000			Marking et al. 1984
А	Rainbow trout (1.0 g), Oncorhynchus mykiss	1,740			Marking et al. 1984
А	Rainbow trout (juvenile), Oncorhynchus mykiss	4,835			Douglas et al. 1986
А	Rainbow trout (1.5 g), Oncorhynchus mykiss	1,200			Mayer and Ellersieck 1986
А	Rainbow trout (0.8 g), Oncorhynchus mykiss	1,360			Mayer and Ellersieck 1986
А	Rainbow trout (0.8 g), Oncorhynchus mykiss	2,080			Mayer and Ellersieck 1986
А	Rainbow trout (1.1 g), Oncorhynchus mykiss	1,900			Mayer and Ellersieck 1986
А	Rainbow trout (1.1 g), Oncorhynchus mykiss	2,300			Mayer and Ellersieck 1986
А	Rainbow trout (0.5 g), Oncorhynchus mykiss	1,330			Mayer and Ellersieck 1986
А	Rainbow trout (0.8 g), Oncorhynchus mykiss	<750			Mayer and Ellersieck 1986
А	Rainbow trout (1.1 g), Oncorhynchus mykiss	<320			Mayer and Ellersieck 1986
А	Rainbow trout (1.2 g), Oncorhynchus mykiss	1,090			Mayer and Ellersieck 1986
А	Rainbow trout (1.1 g), Oncorhynchus mykiss	1,460			Mayer and Ellersieck 1986
А	Rainbow trout (1.2 g), Oncorhynchus mykiss	3,500			Mayer and Ellersieck 1986
А	Rainbow trout (1.2 g), Oncorhynchus mykiss	3,000			Mayer and Ellersieck 1986
А	Rainbow trout (1.0 g), Oncorhynchus mykiss	1,600			Mayer and Ellersieck 1986
А	Rainbow trout (1.0 g), Oncorhynchus mykiss	1,100			Mayer and Ellersieck 1986
А	Rainbow trout (1.0 g), Oncorhynchus mykiss	1,200			Mayer and Ellersieck 1986
А	Rainbow trout (1.0 g), Oncorhynchus mykiss	780			Mayer and Ellersieck 1986
А	Rainbow trout (1.0 g), Oncorhynchus mykiss	1,450			Mayer and Ellersieck 1986

OW MDR Group ^a	Species	LC50/EC50 (µg/L)	SMAV (µg/L)	GMAV (µg/L)	Reference
A	Rainbow trout (0.48-1.25 g), Oncorhynchus mykiss	1,880			Dwyer et al. 1995
А	Rainbow trout (juvenile; 2.7 g), Oncorhynchus mykiss	5,400			Ferrari et al. 2004
А	Rainbow trout (19.7 g), Oncorhynchus mykiss	860			Phipps and Holcombe 1985
А	Atlantic salmon (0.4 g), Salmo salar	4,500			Mayer and Ellersieck 1986
А	Atlantic salmon (0.8 g), Salmo salar	2,070			Mayer and Ellersieck 1986
А	Atlantic salmon (0.8 g), Salmo salar	1,180			Mayer and Ellersieck 1986
А	Atlantic salmon (0.4 g), Salmo salar	905			Mayer and Ellersieck 1986
А	Atlantic salmon (0.8 g), Salmo salar	2,010			Mayer and Ellersieck 1986
А	Atlantic salmon (0.8 g), Salmo salar	1,430			Mayer and Ellersieck 1986
А	Atlantic salmon (0.2 g), Salmo salar	500	1 1 10		Mayer and Ellersieck 1986
А	Atlantic salmon (0.2 g), Salmo salar	1,000	1,119	1,510	Mayer and Ellersieck 1986
А	Atlantic salmon (0.2 g), Salmo salar	1,150			Mayer and Ellersieck 1986
А	Atlantic salmon (0.2 g), Salmo salar	1,100			Mayer and Ellersieck 1986
А	Atlantic salmon (0.2 g), Salmo salar	1,350			Mayer and Ellersieck 1986
А	Atlantic salmon (0.2 g), Salmo salar	220			Mayer and Ellersieck 1986
А	Atlantic salmon (0.2 g), Salmo salar	900			Mayer and Ellersieck 1986
А	Atlantic salmon (0.2 g), Salmo salar	1,000			Mayer and Ellersieck 1986
А	Brown trout, Salmo trutta	1,950			Macek and McAllister 1970
А	Brown trout (0.6 g), Salmo trutta	6,300	2.026		Johnson and Finley 1980; Mayer and Ellersieck 1986
А	Brown trout (fingerling), Salmo trutta	2,000	2,036		Mayer and Ellersieck 1986
А	Brown trout (fry), Salmo trutta	700			Lakota et al. 1981
А	Brook trout (1.15 g), Salvelinus fontinalis	1,070			Post and Schroeder 1971
А	Brook trout (2.04 g), Salvelinus fontinalis	1,450	1 (20)	1.200	Post and Schroeder 1971
А	Brook trout (1.0 g), Salvelinus fontinalis	680	1,629	1,269	Mayer and Ellersieck 1986
А	Brook trout (0.7 g), Salvelinus fontinalis	4,560			Mayer and Ellersieck 1986

OW MDR	Species	LC50/EC50 (µg/L)	SMAV (µg/L)	GMAV (µg/L)	Reference
Group	Proof trout (0.7 g)				
А	Salvelinus fontinalis	2,130			Mayer and Ellersieck 1986
А	Brook trout (0.7 g), Salvelinus fontinalis	1,130			Mayer and Ellersieck 1986
А	Brook trout (0.8 g), Salvelinus fontinalis	1,200			Mayer and Ellersieck 1986
А	Brook trout (0.8 g), Salvelinus fontinalis	1,290			Mayer and Ellersieck 1986
А	Brook trout (1.3 g), Salvelinus fontinalis	4,500			Mayer and Ellersieck 1986
А	Lake trout (1.7 g), Salvelinus namaycush	690			Johnson and Finley 1980; Mayer and Ellersieck 1986
А	Lake trout (1.7 g), Salvelinus namaycush	740			Mayer and Ellersieck 1986
А	Lake trout (1.7 g), Salvelinus namaycush	920	988.1		Mayer and Ellersieck 1986
А	Lake trout (0.5 g), Salvelinus namaycush	872			Mayer and Ellersieck 1986
А	Lake trout (2.6 g), Salvelinus namaycush	2,300			Mayer and Ellersieck 1986
В	Goldfish (0.9 g), Carassius auratus	13,200	14,907		Macek and McAllister 1970
В	Goldfish (0.9 g), Carassius auratus	12,800		14,907	Mayer and Ellersieck 1986
В	Goldfish (juvenile; 1.3-3.3 g), Carassius auratus	17,500			Pfeiffer et al. 1997
В	Goldfish (14.2 g), Carassius auratus	16,700			Phipps and Holcombe 1985
В	Common carp (0.6 g), Cyprinus carpio	5,280			Macek and McAllister 1970
В	Common carp (0.38 g), Cyprinus carpio	1,700	4 1 5 2	4.150	Chin and Sudderuddin 1979
В	Common carp (fry), Cyprinus carpio	4,220	4,155	4,155	Lakota et al. 1981
В	Common carp (20-34 mm), Cyprinus carpio	7,850			de Mel and Pathiratne 2005
В	European chub (12.43 cm; 18.14 g), Leuciscus cephalus	8,656	8,656	8,656	Verep 2006
В	Fathead minnow (0.5 g), Pimephales promelas	14,000			Mayer and Ellersieck 1986
В	Fathead minnow (0.8 g), Pimephales promelas	14,600			Macek and McAllister 1970; Sanders et al. 1983
В	Fathead minnow (0.8 g), Pimephales promelas	7,700	7 367	7 367	Mayer and Ellersieck 1986
В	Fathead minnow (larvae), Pimephales promelas	>1,600	7,307	1,507	Norberg-King 1989
В	Fathead minnow (0.32-0.56 g), Pimephales promelas	5,210			Dwyer et al. 1995
В	Fathead minnow (2 mo), Pimephales promelas	9,000			Carlson 1971

OW MDR Group ^a	Species	LC50/EC50 (µg/L)	SMAV (µg/L)	GMAV (µg/L)	Reference
В	Fathead minnow (0.3 g), Pimephales promelas	5,010			Phipps and Holcombe 1985
В	Fathead minnow (28 d), Pimephales promelas	8,930			Geiger et al. 1985; 1988
В	Fathead minnow (28 d), Pimephales promelas	10,400			Geiger et al. 1985; 1988
В	Fathead minnow (29 d), Pimephales promelas	6,670			Geiger et al. 1985; 1988
В	Fathead minnow (31 d), Pimephales promelas	9,470			Geiger et al. 1985; 1988
В	Bonytail chub (0.29-0.52 g), Gila elegans	3,490	2 655	2 655	Dwyer et al. 1995
В	Bonytail chub (6 d), Gila elegans	2,020	2,033	2,033	Beyers et al. 1994
В	Colorado pikeminnow (0.32- 0.34 g), Ptychochelius lucius	3,070	2,005	2,005	Dwyer et al. 1995
В	Colorado pikeminnow (26 d), Ptychochelius lucius	1,310			Beyers et al. 1994
В	Razorback sucker (0.31-0.32 g), Xyrauchen texanus	4,350	4,350	4,350	Dwyer et al. 1995
В	Black bullhead (1.2 g), Ameiurus melas	20,000	20,000	20,000	Macek and McAllister 1970
В	Channel catfish (1.5 g), Ictalurus punctatus	15,800			Macek and McAllister 1970
В	Channel catfish (0.3 g), Ictalurus punctatus	1,300		8,075 8,075	Brown et al. 1979
В	Channel catfish (1.5 g), Ictalurus punctatus	7,790	8,075		Mayer and Ellersieck 1986
В	Channel catfish (fingerling), Ictalurus punctatus	17,300			Mayer and Ellersieck 1986
В	Channel catfish (27.6 g), Ictalurus punctatus	12,400			Phipps and Holcombe 1985
В	Walking catfish (17-18 cm; 60- 70 g), Clarias batrachus	46,850	27,609	27,609	Tripathi and Shukla 1988
В	Walking catfish (14 cm; 25 g), Clarias batrachus	16,270			Lata et al. 2001
В	Guppy (2.0 cm), Poecilia reticulata	2,515	2,515	2,515	Gallo et al. 1995
В	Gila topminnow (219 mg), Poeciliopsis occidentalis	>3,000	>3,000	>3,000	Dwyer et al. 1999b
В	Striped bass (56 d), Morone saxatilis	760	1 200	1 200	Palawski et al. 1985
В	Striped bass, Morone saxatilis	2,300	1,322	1,322	Palawski et al. 1985
В	Green sunfish (1.1 g), Lepomis cyanellus	9,460	9,460	9,460	Mayer and Ellersieck 1986
В	Redear sunfish (1.1 g), Lepomis microlophus	11,200	11,200	7,920	Macek and McAllister 1970

OW MDR Group ^a	Species	LC50/EC50 (µg/L)	SMAV (µg/L)	GMAV (µg/L)	Reference
В	Bluegill, Lepomis macrochirus	14,000			McCann and Young 1969
В	Bluegill (1.2 g), Lepomis macrochirus	6,760			Macek and McAllister 1970
В	Bluegill, Lepomis macrochirus	16,000			Sanders et al. 1983
В	Bluegill, Lepomis macrochirus	8,200			Sanders et al. 1983
В	Bluegill, Lepomis macrochirus	5,400			Sanders et al. 1983
В	Bluegill, Lepomis macrochirus	5,200			Sanders et al. 1983
В	Bluegill, Lepomis macrochirus	1,800			Sanders et al. 1983
В	Bluegill, Lepomis macrochirus	2,200			Sanders et al. 1983
В	Bluegill, Lepomis macrochirus	1,000			Sanders et al. 1983
В	Bluegill (1.2 g), Lepomis macrochirus	5,230			Mayer and Ellersieck 1986
В	Bluegill (0.6 g), Lepomis macrochirus	5,047	5 261		Mayer and Ellersieck 1986
В	Bluegill (0.4 g), Lepomis macrochirus	7,400	5,201		Mayer and Ellersieck 1986
В	Bluegill (0.4 g), Lepomis macrochirus	5,200			Mayer and Ellersieck 1986
В	Bluegill (0.8 g), Lepomis macrochirus	16,000			Mayer and Ellersieck 1986
В	Bluegill (0.8 g), Lepomis macrochirus	7,000			Sanders et al. 1983; Mayer and Ellersieck 1986
В	Bluegill (0.8 g), Lepomis macrochirus	8,200			Mayer and Ellersieck 1986
В	Bluegill (0.4 g), Lepomis macrochirus	6,200			Mayer and Ellersieck 1986
В	Bluegill (0.7 g), Lepomis macrochirus	5,400			Mayer and Ellersieck 1986
В	Bluegill (0.7 g), Lepomis macrochirus	5,200			Mayer and Ellersieck 1986
В	Bluegill (0.7 g), Lepomis macrochirus	1,800			Mayer and Ellersieck 1986
В	Bluegill (0.7 g), Lepomis macrochirus	2,600			Mayer and Ellersieck 1986
В	Bluegill (0.5 g), Lepomis macrochirus	6,970			Phipps and Holcombe 1985
В	Largemouth bass (0.9 g), Micropterus salmoides	6,400	6,400	6,400	Macek and McAllister 1970
В	Black crappie (1.0 g), Pomoxis nigromaculatus	2,600	2,600	2,600	Johnson and Finley 1980; Mayer and Ellersieck 1986:
В	Greenthroat darter (133 mg), Etheostoma lepidum	2,140	2,140	2,079	Dwyer et al. 1999b

OW MDR	Species	LC50/EC50 (µg/L)	SMAV (µg/L)	GMAV (µg/L)	Reference
Group ^a	Fountain donton (62 mg)				
В	Etheostoma fonticola	2,020	2,020		Dwyer et al. 2005
В	Yellow perch (1.4 g), Perca flavescens	745			Macek and McAllister 1970
В	Yellow perch (0.6 g), Perca flavescens	5,100			Johnson and Finley 1980; Mayer and Ellersieck 1986
В	Yellow perch (1.0 g), Perca flavescens	13,900			Mayer and Ellersieck 1986
В	Yellow perch (1.0 g), Perca flavescens	5,400			Mayer and Ellersieck 1986
В	Yellow perch (1.0 g), Perca flavescens	3,400			Mayer and Ellersieck 1986
В	Yellow perch (1.0 g), Perca flavescens	1,200			Mayer and Ellersieck 1986
В	Yellow perch (0.9 g), Perca flavescens	4,000	2 480	2 480	Mayer and Ellersieck 1986
В	Yellow perch (0.9 g), Perca flavescens	4,200	2,480	2,480	Mayer and Ellersieck 1986
В	Yellow perch (0.9 g), Perca flavescens	480			Mayer and Ellersieck 1986
В	Yellow perch (0.9 g), Perca flavescens	350			Mayer and Ellersieck 1986
В	Yellow perch (1.0 g), Perca flavescens	3,800			Mayer and Ellersieck 1986
В	Yellow perch (1.0 g), Perca flavescens	5,000			Mayer and Ellersieck 1986
В	Yellow perch (1.0 g), Perca flavescens	3,750			Mayer and Ellersieck 1986
В	Yellow perch (fingerling), Perca flavescens	1,420			Mayer and Ellersieck 1986
В	Shortnosed sturgeon, Acipenser brevirostrum	1,810	1,810	1,810	Dwyer et al. 2000
В	Nile tilapia (45-55 mm; 3.17 g), Oreochromis niloticus	2,930	2,930	2,930	dela Cruz and Cagauan 1981
С	Green frog (Gosner stage 25 tadpole), Rana clamitans	22,020			Boone and Bridges 1999
С	Green frog (Gosner stage 25 tadpole), Rana clamitans	17,360	16,296	16,296	Boone and Bridges 1999
С	Green frog (Gosner stage 25 tadpole), Rana clamitans	11,320			Boone and Bridges 1999
С	Boreal toad (200 mg), Bufo boreas	12,310	12,310	12,310	Dwyer et al. 1999b
С	Gray tree frog (tadpole), Hyla versicolor	2,470	2,470	2,470	Zaga et al. 1998
С	African clawed frog (embryo), Xenopus laevis	15,250	5 126	5 136	Zaga et al. 1998
С	African clawed frog (tadpole), Xenopus laevis	1,730	5,130	5,136	Zaga et al. 1998

a OW MDR Groups - Freshwater:

- A. the family Salmonidae in the class Osteichthyes
- B. a second family in the class Osteichthyes, preferably a commercially or recreationally important warmwater species (e.g., bluegill, channel catfish, etc.)
- C. a third family in the phylum Chordata (may be in the class Osteichthyes or may be an amphibian, etc.)
- D. a planktonic crustacean (e.g., cladoceran, copepod, etc.)
- E. a benthic crustacean (e.g., ostracod, isopod, amphipod, crayfish, etc.)
- F. an insect (e.g., mayfly, dragonfly, damselfly, stonefly, caddisfly, mosquito, midge, etc.)
- G. a family in a phylum other than Arthropoda or Chordata (e.g., Rotifera, Annelida, Mollusca, etc.)
- H. a family in any order of insect or any phylum not already represented.

OPP Acute Benchmark Values

The OPP invertebrate acute benchmark value for carbaryl is 0.85 μ g/L, which is ½ the LC₅₀ of 1.7 μ g/L, the stonefly *Pteronarcella badia* as described above.

The OPP fish acute benchmark value is 110 μ g/L, which is ½ the LC₅₀ of 220 μ g/L for the Atlantic salmon (*Salmo salar*).

OW Acute Criterion

The acute criterion, or CMC, for carbaryl is 2.1 µg/L (U.S. EPA 2012).

Genus-Level Invertebrate-Only HC05

The invertebrate acute HC_{05} OW calculated using invertebrate genera data only is shown in Table 2. The invertebrate-only value was calculated following the U.S. EPA (1985) methodology, resulting in a value of 3.074 μ g/L (Table 3).

Table 2. Carbaryl invertebrate SMAVs and GMAVs (µg/L).

Genus	Species	SMAV	GMAV	GMAV Rank
Aplexa	hyonorum	27,000	27,000	20
Anodonta	imbecillis	24,632	24,632	19
Lumbriculus	variegatus	8,200	8,200	18
Orconectes	virilis	2,112	2 462	17
Orconectes	immunis	2,870	2,402	17
Procambarus	clarkii	1,000	1 279	16
Procambarus	sp.	1,900	1,378	16
Cambarus	bartoni	839.6	840	15
Asellus	brevicaudus	280	280	14
Pontoporeia	hoyi	250	250	13
Mysis	relicta	230	230	12
Notonecta	undulata	200	200	11
Daphnia	magna	29.66		
Daphnia	pulex	6.4	18.80	10
Daphnia	carinata	35		
Gammarus	pseudolimnaeus	9.654		
Gammarus	lacustris	18.76	16.76	9
Gammarus	fasciatus	26.00		
Hyalella	azteca	15.2	15.2	8
Pteronarcella	badia	9.163	9.163	7
Simocephalus	serrulatus	8.781	8.781	6
Ceriodaphnia	dubia	5.958	5.958	5

Genus	Species	SMAV	GMAV	GMAV Rank
Claassenia	sabulosa	5.6	5.6	4
Pteronarcys	californica	4.8	4.8	3
Skwala	sp.	3.6	3.6	2
Isogenus	sp.	3.175	3.175	1

Table 3. Inver	tebrate-Only	acute HC	5 value ca	lculated u	using the	only the genus-level
carbaryl inve	rtebrate data (calculated	following	the U.S.	EPA (198	5) methodology.

N	Rank	GMAV	ln(GMAV)	ln(GMAV) ²	P=R/(N+1)	sqrt(P)
20	4	5.6	1.723	2.97	0.1905	0.4364
	3	4.8	1.569	2.46	0.1429	0.3780
	2	3.6	1.281	1.64	0.0952	0.3086
	1	3.175	1.155	1.335	0.0476	0.2182
	Sum:		5.73	8.40	0.4762	1.3412
	$S^2 =$	7.654				
	L =	0.504				
	A =	1.123]			
	$HC_{05} =$	3.074				

Table 4. Summary and comparison of acute values for carbaryl.

Magnitude relative to ALB is the OPP ALB/OW value, the ratio for the OPP value/OW value for each value comparison. A ratio <1 indicates the OPP value is lower than the OW value and a ratio >1 indicates the OPP value is higher than the OW value.

Pesticide	OPP Invertebrate ALB (lowest LC ₅₀ /2) (Year published, species)	OW ALC (FAV/2) (Year published, # of genera, magnitude relative to ALB)	OW Genus-level Invertebrate-only HC ₀₅ /2 (# of genera, magnitude relative to ALB)	Notes
Carbaryl	0.85 μg/L (2022; <i>P. badia</i>)	2.1 μg/L (2012, 47 genera, 0.40X)	1.54 μg/L (20 genera, 0.55X)	FIFRA ALB is based on one of four LC_{50} values used to generate the <i>P. badia</i> SMAV of 9.163 µg/L in the 2012 carbaryl ALC.

Figure 1 shows a genus-level sensitivity distribution for the carbaryl dataset. Major taxonomic groups are delineated by different symbols, and invertebrate genera are identified by name. Lines denoting the CMC, invertebrate $HC_{05}/2$, and OPP acute benchmark values are also included.

Figure 1. Carbaryl genus-level SD.

Symbols represent GMAVs calculated using all quantitative data from the aquatic life criteria document for carbaryl (U.S. EPA 2012), and additional data from the OPP benchmark document for carbaryl (U.S. EPA 2007).

1.1.1.2 Carbaryl Chronic Toxicity Data

For chemicals lacking sufficient chronic data to satisfy the minimum taxonomic data requirements, such as the pesticide carbaryl, EPA Office of Water (OW) calculates the final chronic value (FCV) as the final acute value (FAV) divided by the final acute-to chronic ratio (FACR). The Office of Pesticide Programs (OPP) will also apply Acute to Chronic Ratios (ACRs) to acute data to calculate chronic benchmarks when chronic test data are not available. Calculations of ACRs following OPP and OW methodologies were conducted, and the effects of these ACRs on the resulting OPP and OW chronic values were compared.

Chronic Data Sources

The primary data source for this analysis was the 2012 freshwater carbaryl criteria document (U.S. EPA 2012). The OPP-authored carbaryl problem formulation (U.S. EPA 2010) and California red legged frog effects determination (U.S. EPA 2007) reports were also examined. The latter reports did not include additional test data but did report test concentrations used to calculate ACRs that were used to calculate chronic benchmarks. In addition, one chronic value for *Ceriodaphnia dubia* was obtained from Oris et al. (1991) that was not included in the other data sources.

ACR Calculations

ACR calculations following OW and OPP methodologies are described below. All available chronic carbaryl data are shown in Table 5. All available acute data for species that also have chronic data are shown in Table 6. Table 7 lists all ACRs by species and calculation method.

Invertebrate ACRs

Ceriodaphnia dubia

The ACR following the OW approach is 1.328, calculated as the acute value from Oris et al. (1991) divided by the geometric mean of the MATCs from two replicate chronic tests performed in the same laboratory.

The ACR following the OPP approach is 1.609, calculated as the acute value from Oris et al. (1991) divided by the geometric mean of the NOECs from two replicate chronic tests performed in the same laboratory as per the OPP ACR guidelines (U.S. EPA 2005).

Daphnia magna

The ACR described in the 2012 ALC deviated from the conventional OW approach. Brooke (1991) conducted paired acute and chronic tests, with an EC50 of 10.1 μ g/L, a NOEC of 4.04 μ g/L, and a LOEC of >4.04 μ g/L. Because there was no MATC, OW noted the "theoretical ACR" could fall anywhere between 1.0-2.5, and estimated the ACR as 1.581, calculated as the acute value (10.1 μ g/L) divided by the geometric mean of the NOEC and the acute value (6.388 μ g/L).

The ACR following the OPP approach is 2.5, calculated as the acute value from Brooke (1991) divided by the NOEC for the paired chronic test.

Americamysis bahia

The ACR following the OW approach is 0.8530, calculated as the acute value of 8.46 μ g/L from Thursby and Champlin (1991) divided by the MATC of 9.918 μ g/L from the paired chronic test. The ACR following the OPP approach is 1.178, calculated as the acute value of 8.46 μ g/L from Thursby and Champlin (1991) divided by the No Observed Effect Concentration (NOEC) of 7.18 μ g/L from the paired chronic test. As described in the carbaryl ALC document, these ACRs are treated as qualitative because control survival and number of young produced per female did not meet American Society for Testing and Materials (ASTM) test requirements (U.S. EPA 2012).

Vertebrate (Fish) ACRs

Gila elegans

An ACR for this species could not be calculated following the OW approach. Beyers et al. (1994) performed an early life stage (ELS) chronic test and a static renewal acute test. Although the acute and chronic tests were performed in the same laboratory, the Guidelines (U.S. EPA 1985) specifies that acute test data should also be from a flow through study (except for Daphnids, where static acute tests are acceptable). The ACR following the more flexible OPP approach is 3.108, calculated as the acute value of 2,020 μ g/L from Beyers et al. (1994) divided by the NOEC of 650 μ g/L from ELS test performed in the same laboratory.

Pimephales promelas

Two ACRs for *P. promelas* could be calculated following the OW approach. An ACR of 23.82 was calculated as the acute value of 9,000 μ g/L reported in Carlson (1971) divided by the MATC of 377.9 μ g/L from a paired life cycle test. An ACR of 6.256 was calculated using test data from three studies performed at the same laboratory. The geometric mean of two acute LC50s from tests performed at the same laboratory, 9,000 μ g/L as reported in Carlson (1971) and 5,100 μ g/L as reported in Phipps and Holcombe (1985) was divided by the MATC of 1,073 μ g/L from an ELS test performed in the same laboratory (Norberg-King 1989). Because ACRs calculated from life cycle tests are preferable to those calculated from ELS test, the ACR of 23.82 is used for this species.

The corresponding *P. promelas* ACRs calculated following the OPP approach are 42.86 for the life cycle ACR and 9.326 for the ELS ACR, using the acute data described above divided by a NOEC of 210 μ g/L from the life cycle test (Carlson 1971), and a NOEC of 720 μ g/L from the ELS test (Norberg-King 1989). As described above, the life cycle ACR of 42.86 is used by OPP for this species.

Ptychocheilus lucius

An ACR for this species could not be calculated following the OW approach. Beyers et al. (1994) performed an early life stage (ELS) chronic test and a static renewal acute test. Although the acute and chronic tests were performed in the same laboratory, the Guidelines (U.S. EPA 1985) specifies that acute test data should also be from a flow through study (except for Daphnids, where static acute tests are acceptable). Also worth noting is the study authors reported that the water for the acute and chronic tests was inadvertently aged differently, with the acute tests having higher dissolved oxygen and pH, and lower hardness and alkalinity, than the chronic tests.

The ACR following the more flexible OPP approach is 2.944, calculated as the acute value of 1,310 μ g/L from Beyers et al. (1994) divided by the NOEC of 445 μ g/L from ELS test performed in the same laboratory. Despite the differences in water quality from the acute and chronic Beyers et al. (1994) tests, they were still treated as being more similar to one another than the other acute test for this species, which was an unmeasured static test (Dwyer et al. 1995).

Final ACRs

The final ACRs (FACRs) for the two approaches, expressed as the geometric mean of all available ACRs, is 3.684 following the OW approach, and 4.361 following the OPP approach. The OW FACR consists of ACRs for *C. dubia*, *D. magna* (using the estimated Maximum Acceptable Toxicant Concentration (MATC) following the 2012 ALC methodology), and the life cycle ACR for *P. promelas*.

The Guidelines (U.S. EPA 1985) specify that if the ACRs appear to increase or decrease as the species mean acute values (SMAVs) increase, the FACR should be calculated as the geometric mean for those species whose SMAVs are close to the final acute value (FAV). This is the case for carbaryl, and following the approach used in the 2005 ALC, the FACR is calculated as the geometric mean of the acutely sensitive invertebrate species. When limited to invertebrate species, the FACR following the OW approach is calculated as the geometric mean of the ACRs for *C. dubia* (1.328) and *D. magna* (1.581). Because the final chronic value cannot be larger than the final acute value, the calculated ACR of 1.449 is rounded up to 2. The invertebrate-only FACR following the OPP approach, but applying the Guidelines stipulation that the FACR should be calculated using species with SMAVs close to the FAV if ACRs are proportional to acute sensitivity, is the geometric mean of the ACRs for *C. dubia* (1.609) and *D. magna* (2.5), or 2.006.

The OPP FACR consists of ACRs for *C. dubia*, *D. magna*, and *P. promelas*, as well as *G. elegans*, and *P. lucius*. The *A. bahia* qualitative ACR was not included here because the chronic test did not meet ASTM test acceptability guidelines.

Comparison of Freshwater Chronic Values for Carbaryl

OPP Chronic Benchmarks

For carbaryl, the freshwater invertebrate chronic benchmark is 0.5 μ g/L, calculated as an LC50 of 1.7 μ g/L for *Pteronarcella badia* (Mayer and Ellersieck 1986) divided by the OPP-calculated ACR of 3.73 for *D. magna*.

The freshwater fish chronic benchmark is 6.8 μ g/L, calculated as the LC50 of 250 μ g/L for *Salmo salar* divided by the OPP-calculated ACR of 36.67 for *P. promelas*.

OW Freshwater Chronic Values – All Taxa

Final chronic concentrations following the ACR methodology are calculated by dividing the final acute value by a final ACR (FACR). For carbaryl, the FAV calculated using data from all taxa is 4.219 μ g/L (U.S. EPA 2012). The final chronic value following the OW-ACR approach is 2.110 μ g/L (4.219 μ g/L \div 2), and the final chronic value following the OPP-ACR approach (with the Guidelines stipulation described above) is 2.103 μ g/L (4.219 μ g/L \div 2.006).

OW Freshwater Chronic Values – Invertebrate-Only Data

Final chronic concentrations for the invertebrate-only carbaryl dataset are calculated by dividing the final invertebrate acute value by an ACR. This dataset was comprised of acute invertebrate test data found in the 2012 ALC and Appendix L of U.S. EPA (2007). The resulting acute HC₀₅ calculated from the 20 invertebrate genera using the calculated following the Guidelines (U.S. EPA 1985) methodology was $3.074 \ \mu g/L$. The final invertebrate chronic value following the OW-ACR approach is $1.537 \ \mu g/L$ ($3.074 \ \mu g/L \div 2$), and the final chronic value following the OPP-ACR approach is $1.532 \ \mu g/L$ ($3.074 \ \mu g/L \div 2.006$).

Table 8 lists all chronic values calculated following the different approaches.

Table 5. Chronic test data for carbaryl.

						Test data reported in:		Notes	
Genus	Species	NOEC	LOEC	MATC	Reference	2012 ALC	2007 OPP	2010 OPP	
				I	nvertebrates				
Ceriodaphnia	dubia	8	14	10.58	Oris et al. 1991	Appendix C			
Ceriodaphnia	dubia	6.5	8	7.211	Oris et al. 1991	Appendix C ^b			
Daphnia	magna	1.5	3.3	2.225	Surprenant 1985	Appendix C	Table 21		
Daphnia	magna	4.04	>4.04	6.388°	Brooke 1991	Appendix C			
Americamysis	bahia	7 18	137	9 9 1 8	Thursby and	Appendix D			Low control survival
Timerreantysis	Jania	7.10	15.7	9.910	Champlin 1991	rippendix D			and young per female
					Vertebrates				
Gila	elegans	650	1 240	897.8	Beyers et al.	Appendix C			FLS test
0114	ereguns	050	1,240	077.0	1994	Appendix C			LL5 test
Pimephales	promelas	210	680	377.9	Carlson 1971	Appendix C			Life cycle test
Pimephales	promelas	720	1,600	1,073	Norberg-King 1989	Appendix C			ELS test
Ptychocheilus	lucius	445	866	620.8	Beyers et al. 1994	Appendix C			ELS test

All concentrations expressed as $\mu g/L$, values are grouped by genus.

^a – Estimated from Figure 1 of Oris et al. (1991) using WebPlotDigitizer (https://automeris.io/WebPlotDigitizer/) ^b – Reported in Table 2 of Oris et al. (1991)

^c – Calculated in 2012 ALC as geometric mean of NOEC and acute value

Table 6. Acute Carbaryl Test Data for Species with Chronic Data. All concentrations expressed as $\mu g/L$.

		EC50 am		Test data rep	Test data reported in:		Notes			
Genus	Species	LC50 or	Reference	2012 ALC	2007 OPP	2010 OPP				
	Invertebrates									
Ceriodaphnia	dubia	11.6	Oris et al. 1991	Appendix A			Paired with Oris et al. 1991 chronic values			
Ceriodaphnia	dubia	3.6	Brooke 1990, 1991	Appendix A			Not used			
Danhnia	magna	7.2	Lakota et al. 1981	Appendix A			Not used			
Daphnia	magna	5.6	Sanders et al 1983	Appendix A	Table 21		Not used			
Daphnia	magna	10.1	Brooke 1991	Appendix A	10010-21		Paired with Brooke 1991 chronic values			
Daphina	magna	10.1	Disoke 1991				Tured with Brooke 1991 emone values			
Americamysis	bahia	8.46	Thursby and Champlin 1991	Appendix B			Paired with Thursby and Champlin 1991 chronic values			
Americamysis	bahia	5.7	Lintott 1992a	Appendix B		Table 4	Not used			
	Vertebrates									
Gila	elegans	2,020	Beyers et al. 1994	Appendix A			Paired with Beyers et al. 1994 chronic value (OPP-ACR only)			
Gila	elegans	3,490	Dwyer et al. 1995	Appendix A			Not used			
Pimephales	promelas	14,000	Mayer and Ellersieck 1986	Appendix A			Not used			
Pimephales	promelas	14,600	Macek and McAllister 1970; Sanders et al. 1983	Appendix A			Not used			
Pimephales	promelas	7,700	Mayer and Ellersieck 1986	Appendix A			Not used			
Pimephales	promelas	>1,600	Norberg-King 1989	Appendix A			Not used			
Pimephales	promelas	5,210	Dwyer et al. 1995	Appendix A			Not used			
Pimephales	promelas	9,000	Carlson 1971	Appendix A			Paired with Carlson 1971 (LC-ACR) and Norberg-King 1989 (ELS ACR) chronic value			
Pimephales	promelas	5,010	Phipps and Holcombe 1985	Appendix A			Paired with Norberg-King 1989 (ELS ACR) chronic value			
Pimephales	promelas	9,470	Geiger et al. 1985; 1988	Appendix A			Not used			
Pimephales	promelas	8,930	Geiger et al. 1985; 1988	Appendix A			Not used			
Pimephales	promelas	10,400	Geiger et al. 1985; 1988	Appendix A			Not used			
Pimephales	promelas	6,670	Geiger et al. 1985; 1988	Appendix A			Not used			
<i>Ptychocheilus</i>	lucius	1,310	Beyers et al. 1994	Appendix A			Paired with Beyers et al. 1994 chronic value (OPP-ACR only)			
Ptychocheilus	lucius	3,070	Dwyer et al. 1995	Appendix A			Not used			

Comme	Species	A	CR	Neter			
Genus	Species	OW-ACR	OPP-ACR	Notes			
Invertebrates							
Ceriodaphnia	dubia	1.328	1.609				
Daphnia	magna	1.581	2.5				
Americamysis	bahia	0.8530	1.178	Qualitative ACR			
Vertebrate							
Gila	elegans	N/A	3.108	ELS chronic test			
Pimephales	promelas	23.82	42.86	Life cycle chronic test			
Pimephales	promelas	6.256	9.326	ELS chronic test			
Ptychocheilus	lucius	N/A	2.944	ELS chronic test			
All Taxa ^a		3.684	4.361				
All Invertebrates (FA	ACR)	2	2.006	OW-FACR rounded up to 2			

Table 7. ACKS by species and calculation memory

^a Of the two ACRs for *P. promelas*, only the life cycle test was included in this calculation.

Table 8. Summary and comparison of freshwater chronic values for carbaryl.

Magnitude relative to ALB is the OPP ALB/OW value, the ratio for the OPP value/OW value for each value comparison. A ratio <1 indicates the OPP value is lower than the OW value and a ratio >1 indicates the OPP value is higher than the OW value.

Pesticide	OPP Most Sensitive ALB (Year published, species)	OW ALC (# of ACRs filled, magnitude relative to ALB)	OW Invertebrate-only HC ₀₅ (# of ACRs filled, magnitude relative to ALB)
Carbaryl	0.5 μg/L (2022; estimated NOAEC value for <i>Pteronarcella badia</i> calculated using the ACR for <i>Daphnia magna</i>)	2.1 μg/L (ALC, 0.24X)	1.54 μg/L (0.32X)

1.1.1.3 Carbaryl References

MRID 40098001: Mayer, F.L. and M.R. Ellersieck. 1986. Manual of acute toxicity: Interpretation and data base for 410 chemicals and 66 species of freshwater animals. Resour. Publ. No.160, U.S. Dep. Interior, Fish Wildl. Serv., Washington, DC. 505 p.

Andreu-Moliner, E.S., M.M. Almar, I. Legarra and A. Nunez. 1986. Toxicity of some ricefield pesticides to the crayfish P. clarkii, under laboratory and field conditions in Lake Albufera (Spain). J. Environ. Sci. Health Part B. 21(6): 529-537.

Bailey, H.C., and D.H.W. Liu. 1980. Lumbriculus variegatus, a Benthic Oligochaete, as a Bioassay Organism. ASTM Spec. Tech. Publ., 205-215.

Beyers, D.W., T.J. Keefe and C.A. Carlson. 1994. Toxicity of carbaryl and malathion to two federally endangered fishes, as estimated by regression and ANOVA. Environ. Toxicol. Chem. 13(1): 101-107.

Boone, M.D. and C.M. Bridges. 1999. The effect of temperature on the potency of carbaryl for survival of tadpoles of the green frog (Rana clamitans). Environ. Toxicol. Chem. 18(7): 1482 1484.

Brooke, L.T. 1990. Center for Lake Superior Environmental Studies, University of Wisconsin Superior, Superior, WI. (Memorandum to R.L. Spehar, U.S. EPA, Duluth, MN. January 30).

Brooke, L.T. 1991. Results of freshwater exposures with the chemicals atrazine, biphenyl, butachlor, carbaryl, carbazole, dibenzofuran, 3,3'-dichlorobenzidine, dichlorvos, 1,2-epoxyethylbenzene (styrene oxide), isophorone, isopropalin, oxychlordane, pentachloroanisole, propoxur (baygon), tetrabromobisphenol a, 1,2,4,5-tetrachlorobenzene, and 1,2,3-trichloropropane to selected freshwater organisms. Center for Lake Superior Environmental Studies, University of Wisconsin-Superior, Superior, WI. 110 p.

Brown, K.W., D.C. Anderson, S.G. Jones, L.E. Deuel and J.D. Price. 1979. The relative toxicity of four pesticides in tap water and water from flooded rice paddies. Int. J. Environ. Stud. 14(1): 49-53.

Carlson, A.R. 1971. Effects of long-term exposure to carbaryl (sevin) on survival, growth, and reproduction of the fathead minnow (Pimephales promelas). J. Fish. Res. Board Canada. 29: 583-587.

Chin, Y.N. and K.I. Sudderuddin. 1979. Effect of methamidophos on the growth rate and esterase activity of the common carp Cyprinus carpio L. Environ. Pollut. 18(3): 213-220.

de Mel, G.W.J.L.M.V.T.M. and A. Pathiratne. 2005. Toxicity assessment of insecticides commonly used in rice pest management to the fry of common carp, Cyprinus carpio, a food fish culturable in rice fields. J. Appl. Ichthyol. 21(2): 146-150.

dela Cruz, C.R. and A.G. Cagauan. 1981. Preliminary study on the bioassay of seven pesticides and five weedicides with tilapia, carps, clam and shrimp as test species. Fish. Res. J. Philipp. 6(1): 11-18.

Douglas, M.T., D.O. Chanter, I.B. Pell and G.M. Burney. 1986. A proposal for the reduction of animal numbers required for the acute toxicity to fish test (LC50 determination). Aquat. Toxicol. 8(4): 243-249.

Dwyer, F.J., L.C. Sappington, D.R. Buckler and S.B. Jones. 1995. Use of surrogate species in assessing contaminant risk to endangered and threatened fishes. EPA/600/R-96/029, U.S. EPA, Washington, D.C.

Dwyer, F.J., D.K. Hardesty, C.E. Henke, C.G. Ingersoll, D.W. Whites, D.R. Mount and C.M. Bridges. 1999b. Assessing contaminant sensitivity of endangered and threatened species: Effluent toxicity tests. EPA 600/R-99/099, U.S. EPA, Washington, D.C.

Dwyer, F.J., D.K. Hardesty, C.G. Ingersoll, J.L. Kunz and D.W. Whites. 2000. Assessing contaminant sensitivity of American shad, Atlantic sturgeon and shortnose sturgeon, Final Report - February 2000. Final Rep., U.S. Geol. Surv., Columbia Environ. Res. Ctr., Columbia, MO.

Dwyer, F.J., F.L. Mayer, L.C. Sappington, D.R. Buckler, C.M. Bridges, I.E. Greer, D.K. Hardesty, C.E. Henke, C.G. Ingersoll, J.L. Kunz, D.W. Whites, T. Augspurger, D.R. Mount, K. Hattala, and G.N. Neuderfer. 2005. Assessing contaminant sensitivity of endangered and threatened aquatic species: Part I. Acute toxicity of five chemicals. Arch. Environ. Contam. Toxicol. 48: 143-154.

Federle, P.F. and W.J. Collins. 1976. Insecticide toxicity to three insects from Ohio ponds. Ohio J. Sci. 76(1): 19-24.

Ferrari, A., O.L. Anguiano, J. Soleno, A. Venturino and A.M. Pechen de D'Angelo. 2004. Different susceptibility of two aquatic vertebrates (Oncorhynchus mykiss and Bufo arenarum) to azinphos methyl and carbaryl. Compar. Biochem. Physiol. Part C. 139: 239-243.

Gallo, D., A. Merendino, J. Keizer, and L.Vittozzi. 1995. Acute toxicity of two carbamates to the guppy (Poecilia reticulata) and the zebrafish (Brachydanio rerio). Sci. Total Environ. 171: 131 136.

Geiger, D. L., C.E. Northcott, D.J. Call and L.T. Brooke. 1985. Acute toxicities of organic chemicals to fathead minnows (Pimephales promelas). Vol. 2. Center for Lake Superior Environmental Studies, Univ. of Wisconsin-Superior, Superior, WI.

Geiger, D.L., D.J. Call and L.T. Brooke. 1988. Acute toxicities of organic chemicals to fathead minnows (Pimephales promelas) Volume IV. Center for Lake Superior Environmental Studies, University of Wisconsin-Superior, WI.

Johnson, I C., A.E. Keller and S.G. Zam. 1993. A method for conducting acute toxicity tests with the early life stages of freshwater mussels. In: Environmental toxicology and risk assessment. Landis, W.G., J.S. Hughes and M.A. Lewis (Eds.), ASTM STP 1179. American Society for Testing and Materials, Philadelphia, PA. pp. 381-396.

Johnson, W.W. and M.T. Finley. 1980. Handbook of acute toxicity of chemicals to fish and aquatic invertebrates. Resour. Publ. 137, Fish Wildl. Serv., U.S. D.I., Washington, D.C. 98 p.

Katz, M. 1961. Acute toxicity of some organic insecticides to three species of salmonids and to the threespine stickleback. Trans. Am. Fish. Soc. 90: 264-268.

Lakota, S., A. Raszka and I. Kupczak. 1981. Toxic effect of cartap, carbaryl, and propoxur on some aquatic organisms. Acta Hydrobiol. 23(2): 183-190.

Landrum, P.F. and W.S. Dupuis. 1990. Toxicity and toxicokinetics of pentachlorophenol and carbaryl to Pontoporeia hoyi and Mysis relicta. In: Aquatic toxicology and risk assessment, 13th Volume. Landis, W.G. and W.H. Van der Schalie (Eds.). ASTM STP 1096. American Society for Testing and Materials, Philadelphia, PA. pp. 278-289.

Lata, S., K. Gopal, and N.N. Singh. 2001. Toxicological Evaluations and Morphological Studies in a Catfish Clarias batrachus Exposed to Carbaryl and Carbofuran. J. Ecophysiol. Occup. Health 1(1-2): 121-130.

Lintott, D.R. 1992. Carbaryl technical: acute toxicity to the mysid, Mysidopsis bahia, under flow-through test conditions. Laboratory Project ID: J9112004a. Study performed by Toxikon Environmental Sciences for Rhone-Poulenc Ag Company.

Macek, K.J. and W.A. McAllister. 1970. Insecticide susceptibility of some common fish family representatives. Trans. Am. Fish. Soc. 99(1): 20-27.

Marking, L.L., T.D. Bills and J.R. Crowther. 1984. Effects of five diets on sensitivity of rainbow trout to eleven chemicals. Prog. Fish-Cult. 46: 1-5.

Mayer, F.L. and M.R. Ellersieck. 1986. Manual of acute toxicity: Interpretation and data base for 410 chemicals and 66 species of freshwater animals. Resour. Publ. No.160, U.S. Dep. Interior, Fish Wildl. Serv., Washington, DC. 505 p.

McCann, J.A. and R. Young. 1969. Sevin: toxicity to bluegill: test no. 142. U.S. Agricultural Research Service, Pesticides Regulation Div., Animal Biology Laboratory. Unpublished study; CDL: 104387-A.

McNulty, E.W., F.J. Dwyer, M.R. Ellersieck, E.I. Greer, C.G. Ingersoll and C.F. Rabeni. 1999. Evaluation of ability of reference toxicity tests to identify stress in laboratory populations of the amphipod Hyalella azteca. Environ. Toxicol. Chem. 18(3): 544-548.

Norberg-King, T.J. 1989. An evaluation of the fathead minnow seven-day subchronic test for estimating chronic toxicity. Environ. Toxicol. Chem. 8(11): 1075-1089.

Oris, J.T., R.W. Winner and M.V. Moore. 1991. A four-day survival and reproduction toxicity test for Ceriodaphnia dubia. Environ. Toxicol. Chem. 10(2): 217-224.

Palawski, D., J.B. Hunn and F.J. Dwyer. 1985. Sensitivity of young striped bass to organic and inorganic contaminants in fresh and saline waters. Trans. Am. Fish. Soc. 114(5): 748-753.

Pfeiffer, C.J., B. Qiu and C.H. Cho. 1997. Electron microscopic perspectives of gill pathology induced by 1-naphthyl-N-methylcarbamate in the goldfish (Carassius auratus Linnaeus). Histol. Histopathol. 12(3): 645-653.

Phipps, G.L. and G.W. Holcombe. 1985. A method for aquatic multiple species toxicant testing: Acute toxicity of 10 chemicals to 5 vertebrates and 2 invertebrates. Environ. Pollut. Ser. A 38(2): 141-157.

Phipps, G.L. and G.W. Holcombe. 1990. Toxicity of sevin (carbaryl) to Chinook salmon. U.S. EPA, Duluth, MN. (Memorandum to L. Brooke, Center of Lake Superior Environmental Studies, University of Wisconsin-Superior, WI. September 11).

Post, G. and T.R. Schroeder. 1971. The toxicity of four insecticides to four salmonid species. Bull. Environ. Contam. Toxicol. 6(2): 144-155.

Sanders, H.O. 1969. Toxicity of pesticides to the crustacean Gammarus lacustris. Tech. Pap. No. 25, U.S. D.I., Bur. Sports Fish. Wildl., Fish Wildl. Serv., Washington, D.C. 18 p.

Sanders, H.O. and O.B. Cope. 1966. Toxicities of several pesticides to two species of cladocerans. Trans. Am. Fish. Soc. 95(2): 165-169.

Sanders, H.O., M.T. Finley and J.B. Hunn. 1983. Acute toxicity of six forest insecticides to three aquatic invertebrates and four fishes. Tech. Pap. No. 110, U.S. Fish Wildl. Serv., Washington, D.C. pp. 1-5.

Santharam, K.R., B. Thayumanavan and S. Krishnaswamy. 1976. Toxicity of some insecticides to Daphnia carinata King, and important link in the food chain in the freshwater ecosystems. Indian J. Ecol. 3: 70-73.

Schafers, C. 2002. *Chloroperla grammatica*, Acute toxicity test, 96 h exposure: carbaryl; substance, technical. Lab Project Number: C018556: ACS-001/4-26/N. Unpublished study

prepared by Fraunhofer-Institute for Molecular Biology and Applied Ecology. 31 p. {OPPTS 850.1020}.

Simon, K.A. 1982. Acute toxicity of carbaryl, alpha naphthol and sevin-4-oil tank mix to Cambarus bartoni and Orconectes virilis. In: Environmental monitoring report from the 1982 Maine cooperative spruce budworm suppression project. Maine Forest Service, Dept. of Conservation, Augusta, ME. pp. 61-91.

Stephan, C.E., D.I. Mount, D.J. Hansen, J.H. Gentile, G.A. Chapman and W.A. Brungs. 1985. Guidelines for Deriving Numerical National Water Quality Criteria for the Protection of Aquatic Organisms and their Uses. PB85-227049. Office of Research and Development. Duluth, MN, Narragansett, RI, Corvallis, OR.

Surprenant, D. 1985a. Acute toxicity of sevin technical to sheepshead minnow (Cyprinodon variegatus). Bionomics Report No. BW-85-4-1773: Bionomics Study No. 565.0185.6109.510. Unpublished study prepared by Springborn Bionomics, Inc. 14 p.

Surprenant, D. 1985b. The chronic toxicity of carbaryl technical to Daphnia magna under flow through conditions. Report No. BW-85-7-1813: Study No. 565.0185.6109.130. Unpublished study prepared by Springborn Bionomics, Inc. 35 p.

Thursby, G.B. and D. Champlin. 1991. Flow-through acute and chronic toxicity of carbaryl to Mysidopsis bahia. (Memorandum to D.J. Hansen. U.S. EPA, Narragansett, RI. June 13).

Tripathi, G. and S.P. Shukla. 1988. Toxicity bioassay of technical and commercial formulations of carbaryl to the freshwater catfish, Clarias batrachus. Ecotoxicol. Environ. Saf. 15(3): 277 281.

U.S. EPA. 1985. Guidelines for derving numerical national water critera for the protection of aquatic organisms and their uses. United States Environmental Protection Agency. Stephan, C.E., D.I. Mount, D.J. Hansen, J.H. Gentile, G.A. Chapman and W.A. Brungs. PB85-227049. National Technical Information Service, Springfield, VA. U.S.

U.S. EPA 2004. Interim reregistration eligibility decision document for carbaryl. <u>https://www3.epa.gov/pesticides/chem_search/reg_actions/reregistration/ired_PC-056801_22-Oct-04.pdf</u>

U.S. EPA. 2007. Risks of carbaryl use to the federally-listed California red legged frog (*Rana aurora draytonii*). Pesticide effects determination. Office of Pesticide Programs. Washington, D.C. 20460. October 19, 2007.

U.S. EPA. 2010. Problem formulation for the environmental fate and ecological risk, endangered species, and drinking water assessments in support of the registration review of carbaryl. Office of Pesticide Programs. Washington, D.C. 20460. September 3, 2010.

U.S. EPA. 2012. Aquatic life ambient water quality criteria for carbaryl. Office of Water. EPA-820-R-12-007. April 2012.

U.S. EPA. 2024. Draft Comparison of Aquatic Life Protective Values Developed for Pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Clean Water Act (CWA). EPA-820-D-24-002.

Verep, B.A. 2006. A research on the sensitivity of European chub to some pesticides. Fresenius Environ. Bull. 15(12A): 1517-1520.

Woodward, D.F., and W.L. Mauck (1980). Toxicity of Five Forest Insecticides to Cutthroat Trout and Two Species of Aquatic Invertebrates. Bull. Environ. Contam. Toxicol., 25, (6), 846-854.

Zaga, A., E.E. Little, C.F. Rabeni and M.R. Ellersieck. 1998. Photoenhanced toxicity of a carbamate insecticide to early life stage anuran amphibians. Environ. Toxicol. Chem. 17(12): 2543-2553.

1.1.2 Comparison of Aquatic Life Toxicity Values for Methomyl: Data Sources and Considerations

Data used in the *Draft Comparison of Aquatic Life Protective Values Developed for Pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Clean Water Act (CWA)* (U.S. EPA 2024) are described below. Data for methomyl were gathered by OW in 2015 and combined with data from OPP's registration review document for methomyl (U.S. EPA 2010).

1.1.2.1 Methomyl Acute Toxicity Data

Acute data for methomyl were gathered by OW in 2015 and combined with data from OPP's registration review document for methomyl (U.S. EPA 2010). (See Table 1.) Methomyl data include thirty-nine acute effect LC₅₀s representing 14 species in 13 genera that were classified as "quantitative" data; and two 96-hour LC₅₀s for the species *Daphnia magna* and *Ictalurus punctatus* conducted in acute toxicity tests using a 24% formulation of methomyl that served as the basis for the invertebrate and fish freshwater acute OPP benchmarks. Additional studies using 24% and 29% methomyl formulations were included in the OPP document; however, only the two LC₅₀s noted above that served as the basis of the OPP fish and invertebrate benchmarks were added to the final dataset. The final acute methomyl dataset consisted of 41 LC₅₀s for 14 species across 13 genera, including six invertebrate species representing six genera. Ranked invertebrate GMAVs are listed in Table 2.

Tuble III	icute tomenty t	ata of memory	to nem	mater ug	uutie of 5	
OW MDR Group ^a	Genus	Species	LC50/ EC50 (µg/L)	SMAV (µg/L)	GMAV (µg/L)	Reference
D	Daphnia	magna	5			Mayer and Ellersieck 1985
D	Daphnia	magna	8.8	11.17	11.17	Mayer and Ellersieck 1986
D	Daphnia	magna	31.7			Goodman 1978
F	Chironomus	plumosus	88	88	88	Mayer and Ellersieck 1986
F	Isogenus	sp	343	343	343	Mayer and Ellersieck 1986
F	Skwala	sp	34	34	34	Johnson and Finley 1980
F	Pteronarcella	badia	69	69	69	Mayer and Ellersieck 1986
Е	Gammarus	pseudolimnaeus	920	920	920	Mayer and Ellersieck 1986
В	Pimephales	promelas	2,089	2 410	2 410	Geiger et al. 1988
В	Pimephales	promelas	2,800	2,419	2,419	Mayer and Ellersieck 1986
В	Lepomis	macrochirus	1,200			Mayer and Ellersieck 1986
В	Lepomis	macrochirus	840			Mayer and Ellersieck 1986
В	Lepomis	macrochirus	480			Mayer and Ellersieck 1986
В	Lepomis	macrochirus	600	90 <i>C</i> 4	90C 4	Mayer and Ellersieck 1986
В	Lepomis	macrochirus	620	890.4	890.4	Mayer and Ellersieck 1986
В	Lepomis	macrochirus	1,050			Mayer and Ellersieck 1986
В	Lepomis	macrochirus	2,000			Mayer and Ellersieck 1986
В	Lepomis	macrochirus	1,150			Mayer and Ellersieck 1986

Table 1. Acute toxicity data of methomyl to freshwater aquatic organisms.

OW MDR Group ^a	Genus	Species	LC50/ EC50 (µg/L)	SMAV (µg/L)	GMAV (µg/L)	Reference
В	Lepomis	macrochirus	860			Mayer and Ellersieck 1986
В	Micropterus	salmoides	1,250	1,250	1,250	Mayer and Ellersieck 1986
А	Oncorhynchus	clarkii	6,800	6,800		Mayer and Ellersieck 1986
А	Oncorhynchus	mykiss	1,700			Mayer and Ellersieck 1986
А	Oncorhynchus	mykiss	1,400			Mayer and Ellersieck 1986
А	Oncorhynchus	mykiss	2,000			Mayer and Ellersieck 1986
А	Oncorhynchus	mykiss	1,050		2.015	Mayer and Ellersieck 1986
А	Oncorhynchus	mykiss	860	1,337	5,015	Mayer and Ellersieck 1986
А	Oncorhynchus	mykiss	1,500		-	Mayer and Ellersieck 1986
А	Oncorhynchus	mykiss	1,100			Mayer and Ellersieck 1986
А	Oncorhynchus	mykiss	1,200			Mayer and Ellersieck 1986
А	Oncorhynchus	mykiss	1,600			Mayer and Ellersieck 1986
А	Salmo	salar	1,120			Mayer and Ellersieck 1986
А	Salmo	salar	560			Mayer and Ellersieck 1986
А	Salmo	salar	700			Mayer and Ellersieck 1986
А	Salmo	salar	1,220	939.6	939.6	Mayer and Ellersieck 1986
А	Salmo	salar	1,050			Mayer and Ellersieck 1986
А	Salmo	salar	1,000			Mayer and Ellersieck 1986
А	Salmo	salar	1,150			Mayer and Ellersieck 1986
А	Salvelinus	fontinalis	2,200	1 0 1 7	1 0 1 7	Mayer and Ellersieck 1986
A	Salvelinus	fontinalis	1,500	1,017	1,017	Mayer and Ellersieck 1986
В	Ictalurus	punctatus	320	412	412	Mayer and Ellersieck 1986
В	Ictalurus	punctatus	530	412	412	Mayer and Ellersieck 1986

a MDR Groups – Freshwater:

A. the family Salmonidae in the class Osteichthyes

B. a second family in the class Osteichthyes, preferably a commercially or recreationally important warmwater species (e.g., bluegill, channel catfish, etc.)

C. a third family in the phylum Chordata (may be in the class Osteichthyes or may be an amphibian, etc.)

D. a planktonic crustacean (e.g., cladoceran, copepod, etc.)

E. a benthic crustacean (e.g., ostracod, isopod, amphipod, crayfish, etc.)

F. an insect (e.g., mayfly, dragonfly, damselfly, stonefly, caddisfly, mosquito, midge, etc.)

G. a family in a phylum other than Arthropoda or Chordata (e.g., Rotifera, Annelida, Mollusca, etc.)

H. a family in any order of insect or any phylum not already represented.

OPP Acute Benchmark Values

The OPP invertebrate acute benchmark is 2.5 μ g/L, which is ½ of the *D. magna* LC₅₀ of 5.0 μ g/L from a test conducted with a 24% formulation of methomyl (U.S. EPA 2010).

The OPP fish acute benchmark is 160 μ g/L, which is ½ of the *I. punctatus* LC₅₀ of 320 μ g/L from a test conducted with a 24% formulation of methomyl (U.S. EPA 2010).

OW Acute Criterion

There is no acute criterion, or criterion maximum concentration (CMC), for methomyl.

An illustrative example calculated for this analysis, using all available data (Table 2) was developed.

The FAV calculated following the U.S. EPA (1985) methodology for the 13 genera in the methomyl dataset was $8.652 \mu g/L$ (Table 3).

Genus	Species	SMAV	GMAV	GMAV Rank					
Oncorhynchus	clarkii	6,800	2.015	12					
Oncorhynchus	mykiss	1,337	3,015	15					
Pimephales	promelas	2,419	2,419	12					
Salvelinus	fontinalis	1,817	1,817	11					
Micropterus	salmoides	1,250	1,250	10					
Salmo	salar	939.6	939.6	9					
Gammarus	pseudolimnaeus	920	920	8					
Lepomis	macrochirus	896.4	896.4	7					
Ictalurus	punctatus	411.8	411.8	6					
Isogenus	sp	343	343	5					
Chironomus	plumosus	88	88	4					
Pteronarcella	badia	69	69	3					
Skwala	sp	34	34	2					
Daphnia	magna	11.17	11.17	1					

Table 2. Methomyl SMAVs and GMAVs (µg/L).

N	Rank	GMAV	ln(GMAV)	n(GMAV) ²	P=R/(N+1)	sqrt(P)
13	4	88	4.477	20.05	0.2857	0.5345
	3	69	4.234	17.93	0.2143	0.4629
	2	34	3.526	12.44	0.1429	0.3780
	1	11.17	2.413	5.82	0.0714	0.2673
	Sum:		14.65	56.2	0.714	1.643
	$S^2 =$	64.73				
	L =	0.359				
	A =	2.158				
	HC ₀₅ =	8.652				

Table 3. Genus-level acute HC₀₅ for methomyl calculated following the U.S. EPA (1985) methodology.

Genus-Level Invertebrate-only HC05

The genus-level invertebrate acute HC_{05} calculated following the U.S. EPA (1985) methodology for the four most sensitive invertebrate genera (Table 4) in the methomyl dataset was 5.109 µg/L (Table 5). If the *D. magna* OPP benchmark value was excluded from the dataset (i.e., the value of 5.0 µg/L from a test using a 24% formulation of methomyl), the GMAV for *D. magna* would increase to 16.70 µg/L, and the genus-level invertebrate acute HC_{05} would increase to 8.310 µg/L.

	•			
Genus	Species	SMAV	GMAV	GMAV Rank
Gammarus	pseudolimnaeus	920.0	920.0	6
Isogenus	sp.	343.0	343.0	5
Chironomus	plumosus	88.00	88.00	4
Pteronarcella	badia	69.00	69.00	3
Skwala	sp.	34.00	34.00	2
Daphnia	magna	11.17*	11.17	1

Table 4. Methomyl invertebrate SMAVs and GMAVs (µg/L).

* The *D. magna* SMAV represents two LC₅₀ values (31.7 and 8.8 μ g/L, respectively) classified as quantitative, and an LC₅₀ of 5.0 μ g/L from a test using a 24% formulation of methomyl that is the basis of the OPP acute invertebrate benchmark.

N	Rank	GMAV	ln(GMAV)	ln(GMAV) ²	P=R/(N+1)	sqrt(P)
6	4	88	4.477	20.05	0.5714	0.7559
	3	69	4.234	17.93	0.4286	0.6547
	2	34	3.526	12.44	0.2857	0.5345
	1	11.17	2.413	5.82	0.1429	0.3780
	Sum:		14.65	56.2	1.429	2.323
					-	
	$S^2 =$	32.36				
	L =	0.359				
	A =	1.631]			
	$HC_{05} =$	5.109				

Table 5. Genus-level invertebrate-only acute HC₀₅ for methomyl calculated using the Guidelines algorithm.

<u>Note</u>: The most sensitive GMAV for *Daphnia* includes an LC_{50} of 5.0 µg/L conducted in a test using a 24% methomyl formulation that is the basis for the OPP invertebrate acute benchmark value.

Table 6. Summary and comparison of acute values for methomyl. Magnitude relative to ALB is the OPP ALB/OW value, the ratio for the OPP value/OW value for each value comparison. A ratio <1 indicates the OPP value is lower than the OW value.

Pesticide	Invertebrate ALB (lowest LC ₅₀ /2) (Year published, species)	OW ALC (FAV/2) (Year published, # of genera, magnitude relative to ALB)	OW Genus-level Invertebrate-only HC ₀₅ /2 (# of genera, magnitude relative to ALB)	Notes
Methomyl	2.5 μg/L (2010; Daphnia magna)	4.326 μg/L (illustrative example calculated for this analysis, 8 genera, 0.58X)	2.55 μg/L (6 genera, 0.98X)	The FIFRA ALB of 2.5 μ g/L was calculated as half the LC ₅₀ from a water flea (<i>D. magna</i>) test conducted with 24% pure methomyl (Mayer and Ellersieck 1986).

Figure 1 shows a genus-level sensitivity distribution for the methomyl dataset. Major taxonomic groups are delineated by different symbols, and invertebrate genera are identified by name. Lines denoting the OPP acute benchmark values, the illustrative ALC example, and invertebrate-only acute $HC_{05}/2$ are included.

Figure 1. Methomyl genus-level acute SD.

Symbols represent Genus Mean Acute Values (GMAVs) calculated using all available data from an Office of Water data analysis in 2015, supplemented the Office of Pesticide Programs (OPP) registration review document for methomyl (U.S. EPA 2010). The "Criterion Maximum Concentration" is an illustrative example calculated for these analyses.

1.1.2.2 Methomyl Chronic Toxicity Data

Chronic Data Sources

Data for methomyl were gathered by OW in 2015 and combined with data from OPP's registration review document for methomyl (U.S. EPA 2010). The final chronic methomyl dataset consisted of three NOECs/LOECS for two species across two genera, of which one was an invertebrate and one was a vertebrate (Table 7).

OW MDR Group ^a	Genus	Species	NOEC (µg/L)	LOEC (µg/L)	Endpoint	Reference
D	Daphnia	magna	>0.4	0.9	Number of	MRID 00118512; Muska
D	Dupinnu	magna	2 0.1	0.9	young/adult	and Britelli 1982
D	Daphnia	magna	0.700	10.00	Delayed reproduction	MRID 131254; Britelli and
						Muska 1982
р	Dimonholog	promolos	57.00	117.0	Early lifestage;	MRID 131255; Driscoll
D	Finiephales	prometas	37.00	117.0	reduced survival	and Muska 1982
р	Dimenhalas	promelas	76	142	Life cycle test;	MRID 43072101; Strawn
D	Prinephales				growth	et al. 1993

a MDR Groups - Freshwater:

A. the family Salmonidae in the class Osteichthyes

B. a second family in the class Osteichthyes, preferably a commercially or recreationally important warmwater species (e.g., bluegill, channel catfish, etc.)

C. a third family in the phylum Chordata (may be in the class Osteichthyes or may be an amphibian, etc.)

D. a planktonic crustacean (e.g., cladoceran, copepod, etc.)

E. a benthic crustacean (e.g., ostracod, isopod, amphipod, crayfish, etc.)

F. an insect (e.g., mayfly, dragonfly, damselfly, stonefly, caddisfly, mosquito, midge, etc.)

G. a family in a phylum other than Arthropoda or Chordata (e.g., Rotifera, Annelida, Mollusca, etc.)

H. a family in any order of insect or any phylum not already represented.

OPP Chronic Benchmark Values

The OPP invertebrate chronic benchmark for methomyl is 0.6 μ g/L, which is the MATC for *Daphnia magna*, the geometric mean of the NOEC (>0.4 μ g/L) and LOEC (0.9 μ g/L).

The OPP fish chronic benchmark is 57 μ g/L, which is the NOEC for *Pimephales promelas*.

GLI Tier II Chronic Value Calculation

Paired acute and chronic toxicity data were available for water flea (*Daphnia magna*) and fathead minnow (*Pimephales promelas*) allowing for the calculation of two Acute-to-Chronic Ratios (ACR). The water flea (*Daphnia magna*) chronic test reported NOAEC and LOAEC values of 0.700 and 10.00 μ g/L, respectively based on measurements of delayed reproduction (Britelli and Muska 1982). The fathead minnow (*Pimephales promelas*) chronic test reported NOAEC and LOAEC values of 57.00 and 117.0 μ g/L based on reduced survival (Driscoll and Muska 1982). Because three experimentally determined ACRs were not available for methomyl, a Tier I chronic value could not be derived. However, the GLI Tier II approach was used to calculate the chronic value. Under the GLI Tier II approach, the default value of 18 was used in place of the third, missing ACR.

The paired acute and chronic tests were conducted in different laboratories using water of different physical characteristics; therefore, OPP's ACR approach was used in the calculations, which involves the use of the NOAEC values. The chronic Secondary ACR and Secondary Chronic Value (SCV) calculations are displayed below:

SACR = Geometric Mean of the ACRs
SACR =
$$\sqrt[3]{12.57 * 36.65 * 18} = 20.24$$

SCV = $\frac{FAV}{SACR}$
SCV = $\frac{9.541}{20.24} = 0.471 \,\mu g \, a. i./L$

Table 8. Summary and comparison of chronic values for methomyl. Magnitude relative to ALB is the OPP ALB/OW value, the ratio for the OPP value/OW value for each value comparison. A ratio >1 indicates the OPP value is higher than the OW value.

Pesticide	OPP Invertebrate ALB (NOAEC) (Year published, species)	OW Tier II value (# of ACRs filled, magnitude relative to ALB)	OW Invertebrate-only HC ₀₅ (# of ACRs filled, magnitude relative to ALB)	Notes
Methomyl	0.6 µg/L	0.47 µg/L	NA	One default ACR
	(2020, <i>Daphnia</i>	(GLI Tier II; 2 ACRs,		of 18 used to derive
	magna)	1.3X)		GLI Tier II value.

1.1.2.3 Methomyl References

ECOTOX 12859. Geiger, D.L., Call, D.J., and Brooke L.T. 1988. Acute Toxicities of Organic Chemicals to Fathead Minnows (Pimephales promelas) Volume IV. Ctr. for Lake Superior Environ. Stud., Volume 4, Univ. of Wisconsin-Superior, Superior, WI :355.

ECOTOX 6797. Mayer, F.L.J., and Ellersieck, M.R.. 1986. Manual of Acute Toxicity: Interpretation and Data Base for 410 Chemicals and 66 Species of Freshwater Animals. Resour. Publ. No. 160, U.S. Department of Interior, Fish and Wildlife Services, Washington, DC 505 p. http://www.cerc.usgs.gov/pubs/center/pdfDocs/90506-intro.pdf

MRID 00118512. Muska, C.; Brittelli, M. (1982) Chronic Toxicity of Methomyl to Daphnia magna: Haskell Laboratory Report No. 46-82. (Unpublished study received Dec 3, 1982 under 352-342; submitted by E.I. du Pont de Nemours & Co., Inc., Wilmington, DE; CDL: 071268-B)

MRID 131254. Britelli, M.; Muska, C. 1982. Chronic Toxicity of Methomyl to Daphnia magna: Haskell Laboratory Report No. 4682; MR No. 0581930. (Unpublished study received Oct 3, 1983 under 352366; submitted by E.I. du Pont de Nemours & Co., Inc., Wilmington, DE; CDL:251426B)

MRID 131255. Driscoll, R.; Muska, C. 1982. Early Life Stage Toxicity of Methomyl to Fathead Minnow: Haskell Laboratory Report No. 52882; MR No. 0581930. (Unpublished study received
Oct 3, 1983 under 352366; submitted by E.I. du Pont de Nemours & Co., Inc., Wilmington, DE; CDL:251426C)

MRID 19977. Goodman, N.C. 1978. 48Hour LC50^2I to ~Daphnia magna~: Haskell Laboratory Report No. 16578. (Unpublished study received May 22, 1978 under 352342; submitted by E.I. du Pont de Nemours & Co., Wilmington, Del.; CDL:233993B).

MRID 4009602. Johnson, W.; Finley, M. 1980. Handbook of Acute Toxicity of Chemicals to Fish and Aquatic Invertebrates: Resource Publication 137. US Fish and Wildlife Service, Washington, D.C. 106 p.

MRID 43072101. Strawn, T.; Rhodes, J.; Leak, T. 1993. Full Life Cycle Toxicity of DPXX1179394 (Methomyl) to the Fathead Minnow (Pimephales promelas) Under Flow Through Conditions: Final Report: Lab Project Number: 39293: HLO 4793. Unpublished study prepared by ABC Laboratories, Inc. 3582 p.

U.S. EPA. 1985. Guidelines for derving numerical national water critera for the protection of aquatic organisms and their uses. United States Environmental Protection Agency. Stephan, C.E., D.I. Mount, D.J. Hansen, J.H. Gentile, G.A. Chapman and W.A. Brungs. PB85-227049. National Technical Information Service, Springfield, VA. U.S.

U.S. EPA. 2010. Problem formulation for the environmental fate, ecological risk, endangered species, and drinking water exposure assessments in support of the registration review of methomyl. Office of Pesticide Programs. Washington, D.C. July 16, 2010.

U.S. EPA. 2024. Draft Comparison of Aquatic Life Protective Values Developed for Pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Clean Water Act (CWA). EPA-820-D-24-002.

1.1.3 Comparison of Aquatic Life Toxicity Values for Propoxur: Data Sources and Considerations

Data used in the *Draft Comparison of Aquatic Life Protective Values Developed for Pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Clean Water Act (CWA)* (U.S.EPA 2024) were gathered from the OPP registration review document for propoxur (U.S. EPA 2009) and an EPA ECOTOX Knowledgebase search conducted in 2013. There is no chronic OPP ALB for propoxur, so no chronic value analyses were conducted for this pesticide.

1.1.3.1 Propoxur Acute Toxicity Data

Acute data were gathered from the OPP registration review document for propoxur (U.S. EPA 2009) and an ECOTOX search conducted in 2013 (see Table 1). The propoxur acute dataset consisted of 20 acceptable LC₅₀s for a total of 12 species across 11 genera, of which six were invertebrate species representing five genera. Ranked invertebrate GMAVs are listed in Table 2.

OW MDR Group ^a	Genus	Species	LC50/ EC50 (µg/L)	SMAV (µg/L)	GMAV (µg/L)	Reference
G	Lumbriculus	variegatus	146,000	146,000	146,000	Brooke 1991
D	Daphnia	magna	3,990			Lejczak 1977
D	Daphnia	magna	27.2	107.0	107.0	Brooke 1991
D	Daphnia	magna	110	107.0	107.0	Lakota et al. 1981
D	Daphnia	magna	11			MRID: 00149172; Lamb 1981
F	Aedes	aegypti	150	150	150	Lakota et al. 1981
F	Pteronarcys	californica	13	15.2	15.2	Sanders and Cope 1968
F	Pteronarcys	californica	18	15.5	15.5	Mayer and Ellersieck 1986
Е	Gammarus	fasciatus	50	50	41.2	Sanders 1972
Е	Gammarus	lacustris	34	34	41.2	Mayer and Ellersieck 1986
В	Cyprinus	carpio	7,340	7,340	7,340	Lakota et al. 1981
В	Pimephales	promelas	25,000	14 922	14 922	Mayer and Ellersieck 1986
В	Pimephales	promelas	8,800	14,852	14,652	Geiger et al. 1988/Call et al. 1989
В	Poecilia	reticulata	2,980	2 277	דדר נ	Lejczak 1977
В	Poecilia	reticulata	1,740	2,277	2,277	Lakota et al. 1981
В	Lepomis	macrochirus	4,800	5 155	5 155	Mayer and Ellersieck 1986
В	Lepomis	macrochirus	6,200	5,455	5,455	Lamb 1981
А	Oncorhynchus	mykiss	8,200	5 509	5 500	Mayer and Ellersieck 1986
Α	Oncorhynchus	mykiss	3,700	5,508	3,308	Lamb 1981
А	Salmo	trutta	2,110	2,110	2,110	Lakota et al. 1981

Table 1. Acute toxicity data of propoxur to freshwater aquatic organisms.

a MDR Groups – Freshwater:

A. the family Salmonidae in the class Osteichthyes

B. a second family in the class Osteichthyes, preferably a commercially or recreationally important warmwater species (e.g., bluegill, channel catfish, etc.)

C. a third family in the phylum Chordata (may be in the class Osteichthyes or may be an amphibian, etc.)

D. a planktonic crustacean (e.g., cladoceran, copepod, etc.)

E. a benthic crustacean (e.g., ostracod, isopod, amphipod, crayfish, etc.)F. an insect (e.g., mayfly, dragonfly, damselfly, stonefly, caddisfly, mosquito, midge, etc.)G. a family in a phylum other than Arthropoda or Chordata (e.g., Rotifera, Annelida, Mollusca, etc.)H. a family in any order of insect or any phylum not already represented.

OPP Acute Benchmark Values

The OPP invertebrate acute benchmark for propoxur is 5.5 μ g/L, which is ½ of the *D. magna* LC₅₀ of 11 μ g/L cited in Lamb (1981).

The OPP fish acute benchmark is 1,850 μ g/L, which is ½ of the *O. mykiss* LC₅₀ of 3,700 μ g/L cited in Lamb (1981).

OW Acute Criterion

There is no acute criterion, or criterion maximum concentration (CMC), for propoxur.

An illustrative example calculated for this analysis, using all available data (Table 2) was conducted.

The HC₀₅ calculated following the U.S. EPA (1985) methodology for the eleven genera in the propoxur dataset was 9.151 μ g/L (Table 3)

Genus	Species	SMAV	GMAV	GMAV Rank
Lumbriculus	variegatus	146,000	146,000	11
Pimephales	promelas	14,832	14,832	10
Cyprinus	carpio	7,340	7,340	9
Oncorhynchus	mykiss	5,508	5,508	8
Lepomis	macrochirus	5,455	5,455	7
Poecilia	reticulata	2,277	2,277	6
Salmo	trutta	2,110	2,110	5
Aedes	aegypti	150.0	150.0	4
Daphnia	magna	107.0	107.0	3
Gammarus	fasciatus	50.00	41.22	2
Gammarus	lacustris	34.00	41.25	2
Pteronarcys	californica	15.30	15.30	1

Table 2. Propoxur SMAVs and GMAVs (µg/L).

N	Rank	GMAV	ln(GMAV)	In(GMAV) ²	P=R/(N+1)	s qrt(P)
11	4	150.0	5.011	25.11	0.3333	0.5774
	3	107.0	4.673	21.84	0.2500	0.5000
	2	41.23	3.719	13.83	0.1667	0.4082
	1	15.3	2.728	7.441	0.0833	0.2887
	Sum:		16.13	68.22	0.833	1.774
	$S^2 =$	68.37				
	L =	0.3649				
	A =	2.214				
	$\mathbf{FAV} =$	9.151				
	FAV/2 =	4.6				

Table 3. Genus-level acute FAV for propoxur calculated following the U.S. EPA (1985) methodology.

Genus-Level Invertebrate-only acute HC₀₅

The genus level invertebrate-only acute HC_{05} calculated following the U.S. EPA (1985) methodology for the five invertebrate genera (Table 3) in the proposur dataset was 5.324 μ g/L (Table 4).

Genus	Species	SMAV	GMAV	GMAV Rank
Lumbriculus	variegatus	146,000	146,000	5
Aedes	aegypti	150.0	150.0	4
Daphnia	magna	107.0	107.0	3
Gammarus	fasciatus	50.00	41.02	2
Gammarus	lacustris	34.00	41.25	Z
Pteronarcys	californica	15.30	15.30	1

Table 3. Propoxur invertebrate SMAVs and GMAVs (µg/L).

N	Rank	GMAV	ln(GMAV)	ln(GMAV) ²	P=R/(N+1)	sqrt(P)
5	4	150.0	5.011	25.11	0.6667	0.8165
	3	107.0	4.673	21.84	0.5000	0.7071
	2	41.23	3.719	13.83	0.3333	0.5774
	1	15.3	2.728	7.441	0.1667	0.4082
	Sum:		16.13	68.22	1.667	2.509
				-		
	$S^2 =$	34.19				
	L =	0.3649				
	A =	1.672]			
	HC ₀₅ =	5.324				

Table 4. Genus-level invertebrate-only acute HC₀₅ for propoxur calculated following the U.S. EPA (1985) methodology.

Table 5. Summary and comparison of acute values for propoxur.

Magnitude relative to ALB is the OPP ALB/OW value, the ratio for the OPP value/OW value for each value comparison. A ratio >1 indicates the OPP value is higher than the OW value.

Pesticide	OPP Invertebrate ALB (lowest LC50/2) (Year published, species)	ALC (FAV/2) (Year published, # of genera, magnitude relative to ALB)	OW Genus-level Invertebrate-only HC05/2 (# of genera, magnitude relative to ALB)
Propoxur	5.5 μg/L (2009; <i>D. magna</i>)	4.6 μg/L (illustrative example calculated for this analysis, 11 genera, 1.2X)	2.66 μg/L (5 genera, 2.1X)

Figure 1 shows a genus-level sensitivity distribution for the propoxur dataset. Major taxonomic groups are delineated by different symbols, and invertebrate genera are identified by name. The OPP benchmark acute values, illustrative ALC example, and invertebrate-only acute $HC_{05}/2$ are included.

Figure 1. Propoxur genus-level SD.

Symbols represent Genus Mean Acute Values (GMAVs) calculated using all available data from the Office of Pesticide Program's registration review document for propoxur (U.S. EPA 2009) and an ECOTOX search conducted by Office of Water in 2013. Propoxur does not have a recommended 304(a) aquatic life criteria. The "Criterion Maximum Concentration" is an illustrative example calculated for these analyses.

1.1.3.2 Propoxur Chronic Toxicity Data

There is no chronic OPP Aquatic Life Benchmark for propoxur, so no chronic analysis was conducted for this pesticide.

1.1.3.3 Propoxur References

Brooke, L.T. 1991. Results of Freshwater Exposures with the Chemicals Atrazine, Biphenyl, Butachlor, Carbaryl, Carbazole, Dibenzofuran, 3,3'-Dichlorobenzidine, Dichlorvos, 1,2-Epoxyethylbenzene (Styrene Oxide), Isophorone, Isopropalin, Ox. Center for Lake Superior Environmental Studies, University of Wisconsin, Superior, WI, 110 p. ECOREF#: 17138.

Call, D.J., S.H. Poirier, C.A. Lindberg, S.L. Harting, T.P. Markee, L.T. Brooke, N. Zarvan, and C.E. Northcott. 1989. Toxicity of Selected Uncoupling and Acetylcholinesterase-Inhibiting Pesticides to the Fathead Minnow (Pimephales promelas). In: D.L. Weigmann (*Ed.*), Pesticides in Terrestrial and Aquatic Environments, Proc. Natl. Res. Conf., Virginia Polytechnic Inst. and State Univ., Blacksburg, VA, 317-336. ECOREF#: 14097.

Geiger, D.L., D.J. Call, and L.T. Brooke. 1988. Acute Toxicities of Organic Chemicals to Fathead Minnows (Pimephales promelas) Volume IV. Center for Lake Superior Environmental Studies, University of Wisconsin, Superior, WI, 4, 355 p. ECOREF#: 12859.

Lakota, S., A. Raszka, and I. Kupczak. 1981. Toxic Effect of Cartap, Carbaryl, and Propoxur on Some Aquatic Organisms. Acta Hydrobiol., 23, (2), 183-190. ECOREF#: 4888.

Lamb, D. 1981. Acute toxicity of technical propoxur (Baygon) to *Daphnia magna:* Study No. 81-067-01. Unpublished study prepared by Mobay Chemical Corp. 9p.

Lejczak, B. 1977. Effect of Insecticides: Chlorphenvinphos, Carbaryl and Propoxur on Aquatic Organisms. Pol. Arch. Hydrobiol., 24, (4), 583-591. ECOREF#: 7558.

Mayer, F.L., Jr., and M.R. Ellersieck. 1986. Manual of Acute Toxicity: Interpretation and Data Base for 410 Chemicals and 66 Species of Freshwater Animals. USDI Fish and Wildlife Service, Publication No.160, Washington, DC, 505 p. ECOREF#: 6797.

Sanders, H.O. 1972. Toxicity of Some Insecticides to Four Species of Malacostracan Crustaceans. Tech. Pap. Bur. Sport Fish. Wildl., 66, 19 p. ECOREF#: 887.

Sanders, H.O., and O.B. Cope. 1968. The Relative Toxicities of Several Pesticides to Naiads of Three Species of Stoneflies. Limnol. Oceanogr., 13, (1), 112-117. doi:10.4319/lo.1968.13.1.0112. ECOREF#: 889.

U.S. EPA. 1985. Guidelines for derving numerical national water critera for the protection of aquatic organisms and their uses. United States Environmental Protection Agency. Stephan, C.E., D.I. Mount, D.J. Hansen, J.H. Gentile, G.A. Chapman and W.A. Brungs. PB85-227049. National Technical Information Service, Springfield, VA. U.S.

U.S. EPA. 2009. Registration review: preliminary problem formulation for ecological risk, environmental fate, endangered species, and drinking water assessments for propoxur. Office of Pesticide Programs. Washington, D.C. October 16, 2009.

U.S. EPA. 2024. Draft Comparison of Aquatic Life Protective Values Developed for Pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Clean Water Act (CWA). EPA-820-D-24-002.

1.1.4 Comparison of Aquatic Life Toxicity Values for Malathion: Data Sources and Considerations

Data used in the *Draft Comparison of Aquatic Life Protective Values Developed for Pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Clean Water Act (CWA)* (U.S.EPA 2024) for malathion were obtained from the 1986 criteria which serves as the base dataset, supplemented with an update to this data from EPA ECOTOX Knowledgebase in 2010, and with additional data from the U.S. EPA (2010) OPP pesticide effects determination document that served as the basis for the OPP benchmark concentrations.

1.1.4.1 Malathion Acute Toxicity Data

Acceptable acute data for malathion were obtained from the 1986 criteria which serves as the base dataset, supplemented with an update to this data from ECOTOX in 2010, and with additional LC₅₀s reported in Table 4-8 of U.S. EPA (2010), the OPP pesticide effects determination document that served as the basis for the OPP benchmark concentrations. (See Table 1.) The final dataset consists of 69 SMAVs and 54 GMAVs, including 36 invertebrate species representing 29 invertebrate genera. Ranked SMAVs and GMAVs for all invertebrates included in this analysis are listed in Table 2, below.

OW MDR Group ^a	Genus	Species	LC50/ EC50 (µg/L)	SMAV (µg/L)	GMAV (µg/L)	Reference
А	Oncorhynchus	clarkii	150			Post and Schroeder 1971
А	Oncorhynchus	clarkii	201			Post and Schroeder 1971
А	Oncorhynchus	clarkii	280			Johnson 1980b; Mayer and Ellersieck 1986
А	Oncorhynchus	clarkii	174	215.5		Mayer and Ellersieck 1986
А	Oncorhynchus	clarkii	237			Mayer and Ellersieck 1986
А	Oncorhynchus	clarkii	270			Mayer and Ellersieck 1986
А	Oncorhynchus	clarkii	230			Mayer and Ellersieck 1986
А	Oncorhynchus	kisutch	101			Macek and McAllister 1970
А	Oncorhynchus	kisutch	265			Post and Schroeder 1971
А	Oncorhynchus	kisutch	170	168.5	149.1	Johnson 1980b; Mayer and Ellersieck 1986
А	Oncorhynchus	kisutch	177			Mayer and Ellersieck 1986
А	Oncorhynchus	mykiss	77			Cope 1965
А	Oncorhynchus	mykiss	68			Cope 1965
А	Oncorhynchus	mykiss	110			Cope 1965
А	Oncorhynchus	mykiss	170			Macek and McAllister 1970
А	Oncorhynchus	mykiss	122	91.2		Post and Schroeder 1971
А	Oncorhynchus	mykiss	93.5			Schoettger 1970
Α	Oncorhynchus	mykiss	200			Johnson 1980b; Mayer and Ellersieck 1986
A	Oncorhynchus	mykiss	94			Mayer and Ellersieck 1986

Table 1. Acute toxicity data of malathion to freshwater aquatic organisms.

OW MDR Group ^a	Genus	Species	LC50/ EC50 (µg/L)	SMAV (µg/L)	GMAV (µg/L)	Reference
А	Oncorhynchus	mykiss	4.1			Mayer and Ellersieck 1986
А	Oncorhynchus	mykiss	138			Mayer and Ellersieck 1986
А	Oncorhynchus	mykiss	100			Mayer and Ellersieck 1986
А	Oncorhynchus	mykiss	66			Mayer and Ellersieck 1986
А	Oncorhynchus	mykiss	80			Mayer and Ellersieck 1986
А	Oncorhynchus	mykiss	160			McKim et al. 1987
А	Oncorhynchus	mykiss	250			Li and Fan 1996
А	Salmo	trutta	200			Macek and McAllister 1970
А	Salmo	trutta	101	142.1	142.1	Johnson 1980b; Mayer and Ellersieck 1986
А	Salvelinus	fontinalis	130	124.0		Post and Schroeder 1971
А	Salvelinus	fontinalis	120	124.9		Post and Schroeder 1971
А	Salvelinus	namaycush	76	103.9	113.9	Johnson 1980b; Mayer and Ellersieck 1986
А	Salvelinus	namaycush	142			Mayer and Ellersieck 1986
В	Perca	flavescens	263	263.0	263.0	Macek and McAllister 1970; Johnson 1980b; Mayer and Ellersieck 1986
В	Sander	vitreus	64	64.0	64.0	Johnson 1980b; Mayer and Ellersieck 1986
В	Oreochromis	mossambica	2,000	2,000		Mayer and Ellersieck 1986
В	Oreochromis	niloticus	140	140.0	1,181	Liong et al. 1988
В	Oreochromis	niloticus x mossambica	5,880	5,880	,	Sulaiman et al. 1989
В	Umbra	pygmaea	240	240.0	240.0	Bender and Westman 1976
В	Carassius	auratus	2,610	2867	2 867	Birge et al. 1979
В	Carassius	auratus	3,150	2,807	2,807	Birge et al. 1979
В	Cyprinus	carpio	6,590	6,590	6,590	Macek and McAllister 1970; Johnson 1980b; Mayer and Ellersieck 1986
В	Danio	rerio	760.2	9024	902.4	Ton et al. 2006
В	Danio	rerio	1,050	893.4	893.4	Kumar and Ansari 1984
В	Gila	elegans	15,300	15,300	15,300	Beyers et al. 1994
В	Pimephales	promelas	14,100	10.005	10.005	Geiger et al. 1988
В	Pimephales	promelas	10,600	12,225	12,225	Geiger et al. 1988
В	Ptychocheilus	lucius	9,140	9,140	9,140	Beyers et al. 1994
В	Ameiurus	melas	12,900	12,285	12,285	Macek and McAllister 1970; Johnson 1980b; Mayer and Ellersieck 1986
В	Ameiurus	melas	11,700			Mayer and Ellersieck 1986
В	Ictalurus	punctatus	8,970	8,268	8,268	Macek and McAllister 1970; Johnson 1980b; Mayer and Ellersieck 1986
В	Ictalurus	punctatus	7,620			Mayer and Ellersieck 1986
В	Jordanella	floridae	349	349.0	349.0	Hermanutz 1978

OW MDR Group ^a	Genus	Species	LC50/ EC50 (µg/L)	SMAV (µg/L)	GMAV (µg/L)	Reference			
В	Gambusia	affinis	700	700.0	700.0	Li and Fan 1996			
В	Poecilia	reticulata	840	1 614	1 6 1 4	Pickering et al. 1962			
В	Poecilia	reticulata	3,100	1,014	1,014	Maas 1982			
В	Morone	saxatilis	24.5	20.0	20.0	Palawski et al. 1985			
В	Morone	saxatilis	65	39.9	59.9	Palawski et al. 1985			
В	Lepomis	cyanellus	175			Johnson 1980b; Mayer and Ellersieck 1986			
В	Lepomis	cyanellus	146	163.2		Mayer and Ellersieck 1986			
В	Lepomis	cyanellus	170			Mayer and Ellersieck 1986			
В	Lepomis	macrochirus	90			Pickering et al. 1962			
В	Lepomis	macrochirus	120			Macek et al. 1969			
В	Lepomis	macrochirus	55			Macek et al. 1969			
В	Lepomis	macrochirus	46			Macek et al. 1969			
В	Lepomis	macrochirus	131			Eaton 1970			
В	Lepomis	macrochirus	89			Eaton 1970			
В	Lepomis	macrochirus	103	66.7	66.7	66.7	66.7	103.8	Macek and McAllister 1970; Johnson 1980b; Mayer and Ellersieck 1986
В	Lepomis	macrochirus	20			Mayer and Ellersieck 1986			
В	Lepomis	macrochirus	40			Mayer and Ellersieck 1986			
В	Lepomis	macrochirus	55			Mayer and Ellersieck 1986			
В	Lepomis	macrochirus	84			Mayer and Ellersieck 1986			
В	Lepomis	macrochirus	87			Mayer and Ellersieck 1986			
В	Lepomis	macrochirus	30			Mayer and Ellersieck 1986			
В	Lepomis	macrochirus	110			Mayer and Ellersieck 1986			
В	Lepomis	microlophus	170			Macek and McAllister 1970			
В	Lepomis	microlophus	62	102.7		Johnson 1980b; Mayer and Ellersieck 1986			
В	Micropterus	salmoides	50			Pickering et al. 1962			
В	Micropterus	salmoides	285	152.7	152.7	Macek and McAllister 1970; Johnson 1980b; Mayer and Ellersieck 1986			
В	Micropterus	salmoides	250			Mayer and Ellersieck 1986			
С	Bufo	woodhousei fowleri	420	420.0	420.0	Sanders 1970; Mayer and Ellersieck 1986			
С	Pseudacris	triseriata	200	200.0	200.0	Sanders 1970; Mayer and Ellersieck 1986			
С	Rana	boylii	2,137	2,137	2,137	Sparling and Fellers 2007			
С	Xenopus	laevis	10,900	10,900	10,900	Snawder and Chambers 1989			
D	Ceriodaphnia	dubia	0.5	0.5	0.5	Foster et al. 1998			
D	Daphnia	magna	1.0			Johnson 1980b			
D	Daphnia	magna	1.8	2.4	2.1	Kikuchi et al. 2000			
D	Daphnia	magna	1.6			Maas 1982			

OW MDR Group ^a	Genus	Species	LC50/ EC50 (µg/L)	SMAV (µg/L)	GMAV (µg/L)	Reference
D	Daphnia	magna	33			Hermens et al. 1984
D	Daphnia	magna	0.90			Ren et al. 2007
D	Daphnia	magna	2.2			MRID 41029701; Burgess 1989
D	Daphnia	pulex	2			Cope 1966
D	Daphnia	pulex	1.8	1.9		Sanders and Cope 1966; Johnson 1980b
D	Simocephalus	serrulatus	3			Cope 1966
D	Simocephalus	serrulatus	3.5	2.5		Sanders and Cope 1966; Johnson 1980b
D	Simocephalus	serrulatus	6.2	2.3	2.7	Sanders and Cope 1966
D	Simocephalus	serrulatus	0.59			MRID 40098001; Mayer and Ellersick 1986
D	Simocephalus	vetulus	2.9	2.9		Olvera-Hernandez et al. 2004
D	Cypridopsis	vidua	47	47.0	47.0	MRID 40098001; Mayer and Ellersick 1986
Е	Asellus	brevicaudus	3,000	3,000	3,000	Sanders 1972; Johnson 1980b; Mayer and Ellersieck 1986
Е	Gammarus	fasciatus	0.76			Sanders 1972; Johnson 1980b; Mayer and Ellersieck 1986
Е	Gammarus	fasciatus	0.90	0.7		Sanders 1972; Mayer and Ellersieck 1986
Е	Gammarus	fasciatus	0.50		1.0	Sanders 1972; Mayer and Ellersieck 1986
E	Gammarus	lacustris	1.62			Gaufin et al. 1965
E	Gammarus	lacustris	1.0	1.4		Sanders 1969
Е	Gammarus	lacustris	1.8			MRID 05009242; Sanders 1969
Е	Orconectes	nais	180	180.0	180.0	Sanders 1972; Johnson 1980b; Mayer and Ellersieck 1986
Е	Palaemonetes	kadiakensis	12			Sanders 1972; Mayer and Ellersieck 1986
Е	Palaemonetes	kadiakensis	90	32.6	24.8	Sanders 1972; Johnson 1980b; Mayer and Ellersieck 1986
E	Palaemonetes	kadiakensis	32		21.0	Mayer and Ellersieck 1986
E	Palaemonetes	pugio	8.94	18.9		Key and Fulton 2006
E	Palaemonetes	pugio	39.92			Key and Fulton 2006
E	Procambarus	clarkii	49,170	49,170	49,170	Holck and Meek 1987
F	Drunella	grandis	100	100.0	100.0	Gaufin et al. 1965
F	Lestes	congener	10	10.0	10.0	Johnson 1980b; Mayer and Ellersieck 1986
F	Claassenia	sabulosa	2.8	2.8	2.8	Sanders and Cope 1968; Johnson 1980b; Mayer and Ellersieck 1986
F	Isoperla	sp.	0.69	0.7	0.7	Johnson 1980b; Mayer and Ellersieck 1986

OW MDR Group ^a	Genus	Species	LC50/ EC50 (µg/L)	SMAV (µg/L)	GMAV (µg/L)	Reference
F	Pteronarcella	badia	1.1	3.9	3.9	Sanders and Cope 1968; Johnson 1980b; Mayer and Ellersieck 1986
F	Pteronarcella	badia	6.2			Mayer and Ellersieck 1986
F	Pteronarcella	badia	8.8			Mayer and Ellersieck 1986
F	Pteronarcys	californicus	10	10.0	10.0	Sanders and Cope 1968; Johnson 1980b; Mayer and Ellersieck 1986
F	Peltodytes	sp.	1,000	1,000	1,000	Federle and Collins 1976
F	Arctopsyche	grandis	32	32.0	32.0	Gaufin et al. 1965
F	Hydropsyche	californica	22.5	22.5		Gaufin et al. 1965
F	Hydropsyche	sp.	5	5	10.6	MRID 40098001; Mayer and Ellersick 1986
F	Limnephilus	sp.	1.3	1.3	1.3	Johnson 1980b; Mayer and Ellersieck 1986
F	Atherix	sp.	385	385.0	385.0	Johnson 1980b
F	Chironomus	plumosus	8.4	8.4	72.2	Vedamanikam 2009
F	Chironomus	dilutus	620	620.0	12.2	Hansen and Kawatski 1976
F	Notonecta	undulata	80	80.0	80.0	Federle and Collins 1976
Н	Limnodrilus	sp.	16,700	16,700	16,700	Whitten and Goodnight 1966
Н	Lumbriculus	variegatus	20,500	20,500	20,500	Bailey and Liu 1980
Н	Tubifex	sp.	16,700	16,700	16,700	Whitten and Goodnight 1966
G	Elliptio	icterina	32,000	32,000	32,000	Keller and Ruessler 1997
G	Lampsilis	straminea claibornen	24,000	24,000	25,923	Keller and Ruessler 1997
G	Lampsilis	subangulata	28,000	28,000		Keller and Ruessler 1997
G	Utterbackia	imbecillis	215,000			Keller and Ruessler 1997
G	Utterbackia	imbecillis	219,000	108 654	108 654	Keller and Ruessler 1997
G	Utterbackia	imbecillis	40,000	106,034	108,034	Keller and Ruessler 1997
G	Utterbackia	imbecillis	74,000			Keller and Ruessler 1997
G	Villosa	lienosa	109,000			Keller and Ruessler 1997
G	Villosa	lienosa	111,000	96,382		Keller and Ruessler 1997
G	Villosa	lienosa	74,000		124,133	Keller and Ruessler 1997
G	Villosa	villosa	142,000	150 975		Keller and Ruessler 1997
G	Villosa	villosa	180,000	139,873		Keller and Ruessler 1997

a MDR Groups – Freshwater:

A. the family Salmonidae in the class Osteichthyes

B. a second family in the class Osteichthyes, preferably a commercially or recreationally important warmwater species (e.g., bluegill, channel catfish, etc.)

C. a third family in the phylum Chordata (may be in the class Osteichthyes or may be an amphibian, etc.)

D. a planktonic crustacean (e.g., cladoceran, copepod, etc.)

E. a benthic crustacean (e.g., ostracod, isopod, amphipod, crayfish, etc.)

F. an insect (e.g., mayfly, dragonfly, damselfly, stonefly, caddisfly, mosquito, midge, etc.)

G. a family in a phylum other than Arthropoda or Chordata (e.g., Rotifera, Annelida, Mollusca, etc.)

H. a family in any order of insect or any phylum not already represented.

OPP Acute Benchmark Values

The OPP invertebrate acute benchmark for malathion is 0.049 μ g/L, which is one half of the LC₅₀ of 0.098 μ g/L for *D. magna*.

The OPP fish acute benchmark for malathion is 2.05 μ g/L, which is one half of the LC₅₀ of 4.1 μ g/L for rainbow trout (*Oncorhynchus mykiss*), the lowest LC₅₀ of any fish species.

OW Acute Criterion

The 1986 acute criterion, or CMC, for malathion of 0.1 μ g/L was not calculated using calculated the U.S. EPA (1985) methodology, as it pre-dates the Guidelines. Rather, it was calculated by dividing the effect acute LC50 for *G. lacustrus*, *G. fasciatis*, and *D. magna*, which were all approximately 1 μ g/L, by an application factor of ten (U.S. EPA 1976 – EPA Red Book).

Genus-Level Invertebrate-only Acute HC05

The acute HC_{05} calculated from invertebrate-only GMAVs shown in Table 2 was calculated following the U.S. EPA (1985) methodology is 0.8360 µg/L (Table 3).

Genus	Species	SMAV	GMAV	GMAV Rank
Villosa	lienosa	96,382	104 100	20
Villosa	villosa	108,653	124,133	29
Utterbackia	imbecillis	108,653	108,653	28
Procambarus	clarkii	49,170	49,170	27
Elliptio	icterina	32,000	32,000	26
Lampsilis	straminea claibornen	24,000	25.022	25
Lampsilis	subangulata	28,000	25,925	25
Lumbriculus	variegatus	20,500	20,500	24
Limnodrilus	sp.	16,700	16,700	23
Tubifex	sp.	16,700	16,700	22
Asellus	brevicaudus	3,000	3,000	21
Peltodytes	sp.	1,000	1,000	20
Atherix	sp.	385.0	385.0	19
Orconectes	nais	180.0	180.0	18
Drunella	grandis	100.0	100.0	17
Notonecta	undulata	80.00	80.00	16
Chironomus	plumosus	8.400	70.17	15
Chironomus	dilutus	620.0	/2.1/	15
Cypridopsis	vidua	47.00	47.00	14
Arctopsyche	grandis	32.00	32.00	13
Palaemonetes	pugio	18.89	24.91	10
Palaemonetes	kadiakensis	32.57	24.81	12
Hydropsyche	californica	22.50	22.50	11
Lestes	congener	10.00	10.00	10
Pteronarcys	californicus	10.00	10.00	9
Pteronarcella	badia	3.915	3.915	8
Claassenia	sabulosa	2.800	2.800	7
Simocephalus	vetulus	2.900	2 697	6
Simocephalus	serrulatus	2.489	2.087	0

Table 2. Malathion Invertebrate SMAVs and GMAVs (µg/L).

Genus	Species	SMAV	GMAV	GMAV Rank	
Daphnia	magna	2.394	2 121	5	
Daphnia	pulex	1.897	2.131	5	
Limnephilus	sp.	1.300	1.300	4	
Ceriodaphnia	dubia	1.294	1.294	3	
Gammarus	lacustris	1.429	0.0005	2	
Gammarus	fasciatus	0.6993	0.9995	2	
Isoperla	sp.	0.6900	0.6900	1	

Table 3. Genus-level invertebrate-only acute HCo	5 for malathion calculated following the
U.S. EPA (1985) methodology.	_

N	Rank	GMAV	ln(GMAV)	ln(GMAV) ²	P=R/(N+1)	sqrt(P)
29	4	1.3	0.262	0.07	0.1333	0.3651
	3	1.294	0.258	0.07	0.1000	0.3162
	2	0.9995	-0.001	0.00	0.0667	0.2582
	1	0.69	-0.371	0.138	0.0333	0.1826
	Sum:		0.15	0.27	0.3333	1.1221
	$S^2 =$	14.44				
	L =	-1.029				
	A =	-0.179				
	HC ₀₅ =	0.8360				

Table 4. Summary and comparison of acute values for malathion by approach.Magnitude relative to ALB is the OPP ALB/OW value, the ratio for the OPP value/OW value for

			OW Genus-level
each value comp	arison. A ratio <1 indicate	es the OPP value is lower that	in the OW value.
Magintude Telati	VC 10 ALD IS UIC OFF AL	D/OW value, the fatto for the	

Pesticide	OPP Invertebrate ALB (lowest LC50/2) (Year published, species)	OW ALC (FAV/2) (Year published, # of genera, magnitude relative to ALB)	OW Genus-level Invertebrate-only HC ₀₅ /2 (# of genera, magnitude relative to ALB)
Malathion	0.049 μg/L	0.1 μg/L	0.418 μg/L
	(2016; <i>C. dubia</i>)	(1986, "Gold Book", 0.49X)	(29 genera, 0.12X)

Figure 1 shows a genus-level sensitivity distribution for the malathion dataset. Major taxonomic groups are delineated by different symbols, and invertebrate genera are identified by name. Lines denoting the CMC, invertebrate acute $HC_{05}/2$, and OPP acute benchmark values are also included.

Figure 1. Malathion acute genus-level SD.

Symbols represent Genus Mean Acute Values (GMAVs) calculated using all available data from the malathion ALC (U.S. EPA 1986), the Office of Pesticide Program's registration review document for malathion (U.S. EPA 2010), and an ECOTOX search conducted by Office of Water in 2010.

1.1.4.2 Malathion Chronic Toxicity Data

For chemicals lacking sufficient chronic data to satisfy the minimum taxonomic data requirements, such as malathion, the EPA Office of Water (OW) calculates the final chronic value (FCV) as the final acute value (FAV) divided by the final acute-to chronic ratio (FACR). The Office of Pesticide Programs (OPP) will also apply ACRs to acute data for sensitive taxonomic groups to calculate chronic benchmarks when chronic test data are not available. Calculations of ACRs following OPP and OW methodologies were conducted, and the effects of these ACRs on the resulting OPP and OW chronic values were compared.

Chronic Data Sources

The data sources for this analysis were a 2010 ECOTOX search for malathion and the OPPauthored malathion effects determination reports for delta smelt and California tiger salamander (U.S. EPA 2010) and California red legged frog (U.S. EPA 2007). Many values were reported across all three data sources.

ACR Calculations

ACR calculations following OW and OPP methodologies are described below. All available chronic malathion data are shown in Table 5. All available acute data for species that also have chronic data are shown in Table 6. Table 7 lists all ACRs by species and calculation method.

Invertebrate ACRs

Daphnia magna

An ACR for *D. magna* could not be calculated following the Guidelines requirements, as there were no acute and chronic tests for this species conducted in the same study or laboratory (Stephan et al. 1985). However, invertebrates are the most sensitive taxonomic group to malathion, and *D. magna* is the only invertebrate species with chronic malathion data. In addition, the Guidelines requires ACR from at least three families; including at least one fish, one invertebrate, and one acutely sensitive species. For these reasons, a *D. magna* ACR was calculated for this analysis.

The "qualitative" OW *D. magna* ACR is 5.942, calculated as the geometric mean of the two acute values identified as EC_{50s} (Johnson 1980b, Kikuchi et al. 2000) divided by the geometric mean of the two chronic tests with MATCs (Biesinger 1973, Blakemore and Burgess 1990). The acceptable registrant submitted acute study by Burgess (1989) was not included in this calculation because it was a formulation (57% active ingredient), and below the 80% purity threshold recommended in the Guidelines (U.S. EPA 1985).

The ACR calculated following the OPP approach is 13.22, calculated as the geometric mean of all 48-hour acute values divided by the geometric mean of the NOECs from all chronic studies. The OPP ACR guidance offers flexibility when multiple acceptable acute and chronic values are available for the same species (U.S. EPA 2005).

Vertebrate (Fish) ACRs

Oncorhynchus mykiss

An ACR for this species could not be calculated following the OW approach. Cohle (1989) reported test results following a 97-day ELS test in an unpublished report, but there are no acute studies conducted in the same laboratory.

Following the rationale used for *D. magna*, the OPP ACR for *O. mykiss* is 4.074, calculated as the geometric mean of all acute tests listed in Table 2 (all of which were 96 hours), divided by the NOEC reported by Cohle (1989).

Gila elegans

An ACR for this species could not be calculated following the OW approach. Beyers et al. (1994) performed an early life stage (ELS) chronic test and a static-renewal acute test. Although the acute and chronic tests were performed in the same laboratory, the Guidelines (U.S. EPA 1985) specifies that acute test data should also be from a flow-through study (except for Daphnids, where static acute tests are acceptable). The ACR following the OPP approach is 15.46, calculated as the acute value of 15,300 μ g/L from Beyers et al. (1994) divided by the NOEC of 990 μ g/L from ELS test performed in the same laboratory.

Pimephales promelas

An ACR for this species could not be calculated following the OW approach. Mount and Stephan (1967) performed an acute and chronic test in the same laboratory, but the acute test was static. The OPP ACR for *P. promelas* is 63.18, calculated as the geometric mean of the three acute flow-through tests listed in **Table 6** divided by the NOEC of the Mount and Stephan (1967) chronic test.

Ptychocheilus lucius

An ACR for this species could not be calculated following the OW approach. Beyers et al. (1994) performed an early life stage (ELS) chronic test and a static-renewal acute test. Although the acute and chronic tests were performed in the same laboratory, the Guidelines (U.S. EPA 1985) states that acute test data must also be from a flow-through study (except for Daphnids, where static acute tests are acceptable). Also worth noting is the study authors reported that the water for the acute and chronic tests was inadvertently aged differently, with the acute tests having higher dissolved oxygen and pH, and lower hardness and alkalinity, than the chronic tests. The ACR following the OPP approach is 5.440, calculated as the acute value of 9,140 μ g/L from Beyers et al. (1994) divided by the NOEC of 1,680 μ g/L from ELS test performed in the same laboratory.

Jordanella floridae

The OW ACR for *J. floridae* is 15.98, calculated as the acute value from a flow-through test conducted by Hermanutz (1978) divided by the MATC for the survival endpoint from a life cycle test conducted by Hermanutz (1978). The OPP ACR for *J. floridae* is 40.58, calculated as the acute value from a flow-through test conducted by Hermanutz (1978), divided by the NOEC for the growth endpoint from a life cycle test conducted by Hermanutz (1978).

Lepomis macrochirus

The OW ACR for *L. macrochirus* is 15.27, calculated as the geometric mean of two flow through acute tests conducted by Eaton (1970) divided by the MATC of an ELS test conducted in the same laboratory (Eaton 1970). The OPP ACR is 21.60, calculated as the geometric mean of the Eaton (1970) acute tests divided by the NOEC of the Eaton (1970) ELS test.

Oryzias latipes

An OW ACR could not be calculated for *O. latipes*. An OPP ACR of 48.60 was calculated as the ratio of the definitive acute value 9,700 μ g/L divided by the NOEC of 199.6 μ g/L from Beaman et al. (1999). This ACR is considered qualitative and is not used to calculate a final ACR for this chemical.

Oreochromis mossambica

An OW ACR could not be calculated because there were no paired acute and chronic tests. An OPP ACR was also not calculated for this species because there was no definitive NOEC for the chronic test. If a NOEC of $<500 \mu g/L$ is used as the denominator, the ACR would be >1.523, calculated as the geometric mean of the two definitive acute values divided by the NOEC. Because this is a small greater than value, it is not included in the final ACR calculations.

Channa punctata

An OW ACR could not be calculated for this species. An acute (Pandey et al. 2005) and chronic (Pandey et al. 1981) test were conducted by the same author, but it could not be confirmed if the tests were performed in the same laboratory. Because the chronic test duration was only 15 days, an OW ACR would not have been calculated even if the acute and chronic tests were from the same laboratory. An OPP ACR of 4.234 was calculated as the geometric mean of the four acute tests divided by the NOEC from Pandey et al. (1981). This ACR is considered qualitative and is not used to calculate a final ACR for this chemical.

Cyprinodon variegatus

The OW ACR is 8.5, calculated as the acute value of 51 μ g/L reported in Hansen and Parish (1977) and Parish et al. (1977) divided by the paired chronic MATC of 6 μ g/L. The OPP ACR of 12.75 is calculated by the Hansen and Parish (1977) and Parish et al. (1977) acute value divided by the paired NOEC of 4 μ g/L.

Final ACRs

The final ACRs (FACRs) for the two approaches, expressed as the geometric mean of all available ACRs, is 10.54 following the OW approach, and 15.42 following the OPP approach. The OW FACR consists of ACRs for *J. floridae*, *L. macrochirus*, and *C. variegatus*. The OW FACR also includes the qualitative ACR for *D. magna* that could not be calculated following the OW methodology, but which is included because it is the only invertebrate species for which chronic data are available. The OPP FACR consists of ACRs for the species listed above, as well as *O. mykiss*, *G. elegans*, *P. promelas*, and *P. lucius*. Qualitative ACRs for *O. latipes* and *C. punctata* were not included here because of chronic test duration. Table 7 lists all final and invertebrate only ACRs.

The Guidelines notes that a range of ACRs that is greater than 10-fold may indicate a potential cause for concern. ACRs calculated following the OPP approach vary by a factor of 11.6. While there is no clear relationship between the size of ACRs and acute sensitivity for this chemical, the largest ACR is for the acutely insensitive fish species *P. promelas*. A second option would be to exclude the *P. promelas* ACR of 63.18 from the OPP FACR calculation, which would result in a FACR of 12.61 (Table 7).

Comparison of Freshwater Chronic Values for Malathion

OPP Chronic Benchmarks

For malathion, the freshwater invertebrate chronic benchmark is $0.06 \mu g/L$ (Table 8), the NOEC of a registrant submitted *D. magna* test (Blakemore and Burgess 1990). The freshwater fish chronic benchmark is 8.6 $\mu g/L$, the NOEC for the growth endpoint reported in Hermanutz (1978).

OW Freshwater Chronic Values – All Taxa

Final chronic concentrations following the ACR methodology are calculated by dividing the final acute value by a final ACR (FACR). For malathion, a freshwater FAV of 0.8927 μ g/L was calculated from the 53 genera included in the 2010 ECOTOX update. The final chronic value following the OW-ACR approach (including the *D. magna* ACR that deviated from the Guidelines), is 0.0847 μ g/L (0.8927 μ g/L \div 10.54), and the final chronic value following the OPP-ACR approach is 0.0579 μ g/L (0.8927 μ g/L \div 15.42). The OPP FACR following the second option (excluding the ACR of 63.18 for P. promelas) is 0.0708 (0.8927 μ g/L \div 12.61).

OW Freshwater Chronic Values – Invertebrate Taxa

Final chronic concentrations for the invertebrate-only malathion dataset are calculated by dividing the final invertebrate acute value by an ACR. This dataset was comprised of acute invertebrate test data found in the 2010 ECOTOX update and the 2010 effects determination report U.S. EPA (2010). The resulting acute HC₀₅ calculated from the 29 invertebrate genera using the Guidelines methology was 0.8360 µg/L. The final invertebrate chronic value following the OW-ACR approach (using the *D. magna* ACR that deviated from the Guidelines) is 0.1407 µg/L (0.8360 µg/L ÷ 5.942), and the final chronic value following the OPP-ACR approach is 0.0632 µg/L (0.8360 µg/L ÷ 13.22). Table 8 lists all chronic values calculated following the different approaches.

Table 5. Chronic test data for malathion.

All concentrations expressed as μ g/L.

						Test data reported in:				
Genus	Species	NOEC	LOEC	MATC	Reference	2010 ECOTOX Search	2007 OPP	2010 OPP	OPP Classification	Notes ^a
					Invertebr	rates				
Daphnia	magna	0.57	0.76	0.658	Biesinger 1973	X				OW,OPP
Daphnia	magna	0.06	0.1	0.077	Blakemore and Burgess 1990		Table 23	Table 4-10	Acceptable	OW,OPP
Daphnia	magna	0.15	NR	0.150	Dortland 1980		Table 23		Qualitative	OPP
					Vertebra	ates				
Oncorhynchus	mykiss	21	44	30.40	Cohle 1989		Table 20	Table 4-7	Qualitative	ELS; OPP
Gila	elegans	990	2,000	1,407	Beyers et al. 1994	X				ELS; OPP
Pimephales	promelas	200	580	340.6	Mount and Stephan 1967	X				LC; OPP
Ptychocheilus	lucius	1680	3,510	2,428	Beyers et al. 1994	X				ELS; OPP
Jordanella	floridae ^b	19.3	25	21.83	Hermanutz 1978	X				LC: OW
Jordanella	floridae ^c	8.6	10.9	9.682	Hermanutz 1978		Table 20	Table 4-7	Quantitative	LC; OPP
<i>x</i> ·	1.	5	10	7.071	Ester 1070	V				
Lepomis	macrochirus	5	10	/.0/1	Eaton 1970	X				ELS; OW, OPP
Oryzias	latipes	199.6	798	399.2	Beaman et al. 1999		Table 20	Table 4-7	Qualitative	14d; OPP
Oreochromis	mossambica	ND	500		Sweilum 2006		Table 20	Table 4-7	Qualitative	168d
Channa	punctata	500	ND		Pandey et al. 1981		Table 20	Table 4-7	Qualitative	15d; OPP
Cyprinodon	variegatus	4	9	6	Hansen and Parrish 1977	X				ELS; OW, OPP

^a-LC-life cycle test, ELS-early life stage test, OW – used in OW-ACR calculation, OPP – used in OPP-ACR calculation

		EC50		Test data rep	orted in:					
Genus	Species	or LC50	Reference	2010 ECOTOX Search	2007 OPP	2010 OPP	OPP Classification	Notes ^a		
Invertebrates										
Daphnia	magna	1.0	Johnson 1980b	Х	Table 22	Table 4-8	Acceptable	EC50; S,U; OW, OPP		
Daphnia	magna	1.6	Maas 1982	Х				LC50; S,U; OPP		
Daphnia	magna	33	Hermens et al. 1984	Х				LC50; S,M; OPP		
Daphnia	magna	1.8	Kikuchi et al. 2000	Х				EC50; S,U; OW,OPP		
Daphnia	magna	0.90	Ren et al. 2007	Х				LC50; S,U; OPP		
Daphnia	magna	2.20	Burgess 1989		Table 22	Table 4-8	Acceptable	57% a.i.; OPP		
Daphnia	magna	0.098	Rawesh et al. 1975		Table 22		Qualitative – 2007; Invalid - 2010	Not used, 24hr.		
Daphnia	magna	1.7	ECOREF 6449		Table 22		Qualitative	OPP		
Daphnia	magna	2.35	Cano et al. 1999		Table 22		Qualitative	Not used, 24 hr.		
				Vertebrates	6					
Oncorhynchus	corhynchus mykiss 77 Cope 1965		Cope 1965	Х				S,U; OPP		
Oncorhynchus	mykiss	68	Cope 1965	Х				S,U; OPP		
Oncorhynchus	mykiss	110	Cope 1965	Х				S,U; OPP		
Oncorhynchus	mykiss	170	Macek and McAllister 1970	Х		Table 4-3		S,U; OPP		
Oncorhynchus	mykiss	122	Post and Schroeder 1971	Х				S,U; OPP		
Oncorhynchus	mykiss	93.5	Schoettger 1970	X				S,U; OPP		
Oncorhynchus	mykiss	200	Johnson 1980b; Mayer and Ellersieck 1986	Х				S,U; OPP		
Oncorhynchus	mykiss	94	Mayer and Ellersieck 1986	Х				S,U; OPP		
Oncorhynchus	mykiss	4.1	Mayer and Ellersieck 1986	X	Table 19	Table 4-3	Qualitative	S,U; OPP		
Oncorhynchus	mykiss	138	Mayer and Ellersieck 1986	X				S,U; OPP		
Oncorhynchus	mykiss	100	Mayer and Ellersieck 1986	X				S,U; OPP		
Oncorhynchus	mykiss	66	Mayer and Ellersieck 1986	X				S,U; OPP		
Oncorhynchus	mykiss	80	Mayer and Ellersieck 1986	X				S,U; OPP		
Oncorhynchus	mykiss	160	McKim et al. 1987	Х	Table 19		Qualitative	S,U; OPP		
Oncorhynchus	mykiss	250	Li and Fan 1996	Х				S,U; OPP		
Oncorhynchus	mykiss	32.8	Animal Biology Lab 1968			Table 4-3	Acceptable	OPP		
Gila	elegans	15,300	Beyers et al. 1994	X				R,M; OPP		

Table 6. Acute malathion test data for species with chronic test data. All concentrations expressed as µg/L.

		EC50 or		Test data rep	orted in:			
Genus	Species		Reference	2010 ECOTOX	2007 OPP	2010 OPP	OPP Classification	Notes ^a
		LC50		Search				
Pimephales	promelas	16,000	Pickering et al. 1962	Х				S,U
Pimephales	promelas	23,000	Pickering et al. 1962	Х				S,U
Pimephales	promelas	9,000	Mount and Stephan 1967	Х				S,U
Pimephales	promelas	13,500	Bender 1969a	Х				F,U; OPP
Pimephales	promelas	9,700	Bender 1969b	Х				S,U
Pimephales	promelas	8,650	Macek and McAllister 1970; Johnson 1980b; Mayer and Ellersiack 1986	Х	Table 19	Table 4-3	Acceptable	S,U
Pimenhales	promelas	11 000	Mayer and Ellersieck 1986	x				SU
Pimenhales	prometas	14 100	Geiger et al 1988	X	Table 19		Qualitative	F M [·] OPP
Pimenhales	prometas	10,600	Geiger et al. 1988	X			Quantative	F M: OPP
Pimephales	promelas	12,500	Henderson and Pickering 1958		Table 19		Qualitative	
	7 .	0.1.40	D (11004	NZ.				
Ptychocheilus	lucius	9,140	Beyers et al. 1994	X				R,M; OPP
Jordanella	floridae	349	Hermanutz 1978	Х	Table 19		Qualitative	F,M; OW,OPP
Jordanella	floridae	280	Hermanutz et al. 1985		Table 19		Qualitative	
- ·				**				
Lepomis	macrochirus	90	Pickering et al. 1962	X				S,U
Lepomis	macrochirus	120	Macek et al. 1969	X				S,U
Lepomis	macrochirus	55	Macek et al. 1969	X				S,U
Lepomis	macrochirus	46	Macek et al. 1969	X				S,U
Lepomis	macrochirus	131	Eaton 1970	X				F,U; OW,OPP
Lepomis	macrochirus	89	Eaton 1970	X				F,U; OW,OPP
Lepomis	macrochirus	103	Macek and McAllister 1970; Johnson 1980b; Mayer and Ellersieck 1986	Х		Table 4-3	Qualitative	S,U
Lepomis	macrochirus	20	Mayer and Ellersieck 1986	Х	Table 19	Table 4-3	Qualitative	S,U
Lepomis	macrochirus	40	Mayer and Ellersieck 1986	Х		Table 4-3	Qualitative	S,U
Lepomis	macrochirus	55	Mayer and Ellersieck 1986	Х		Table 4-3	Qualitative	S,U
Lepomis	macrochirus	84	Mayer and Ellersieck 1986	Х				S,U
Lepomis	macrochirus	87	Mayer and Ellersieck 1986	X				S,U
Lepomis	macrochirus	30	Mayer and Ellersieck 1986	Х	Table 19	Table 4-3	Qualitative	S,U
Lepomis	macrochirus	110	Mayer and Ellersieck 1986	Х				S,U
Lepomis	macrochirus	336.6	ECOTOX 77525		Table 19		Qualitative	

		EC50		Test data rep	orted in:			
Genus	Species	or LC50	Reference	2010 ECOTOX Search	2007 OPP	2010 OPP	OPP Classification	Notes ^a
Lepomis	macrochirus	48	Gries and Purghart 2001			Table 4-3	Acceptable	
Oryzias Oryzias	latipes latipes	<2,800 9,700	ECOTOX 8977 ECOTOX 89099		Table 19 Table 19		Qualitative Qualitative	OPP
Oreochromis	mossambica	<2,400	Mayer and Ellersieck 1986	Х				S,U
Oreochromis	mossambica	2,000	Mayer and Ellersieck 1986	Х	Table 19	Table 4-3	Qualitative	S,U
Oreochromis	mossambica	290.1	Liu et al. 1983		Table 19		Qualitative	
Channa Channa	punctata	3890 894	ECOTOX 11888 Kaur and Toor 1995		Table 19 Table 19		Qualitative Qualitative	
Channa	punctata	874	Kaur and Toor 1995		Table 19		Qualitative	
Channa	punctata	6610	Pandey et al. 2005		Table 19		Qualitative	OPP
Cyprinodon	variegatus	51	Hansen and Parrish 1977	Х				F,M; OW,OPP
Cyprinodon	variegatus	33	Bowman 1989	Х				F,U

^aF – flow through, R – renewal, S – static, M – measured, U – unmeasured, OW – used in OW-ACR calculation, OPP – used in OPP-ACR calculation

Comus	G	A	CR	Natar				
Genus	Species	OW-ACR	OPP-ACR	Notes				
			I	nvertebrates				
Daphnia	magna	5.942ª	13.22	OW ACR following Guidelines could not be calculated.				
			,	Vertebrates				
Oncorhynchus	mykiss	N/A	4.074					
Gila	elegans	N/A	15.46					
Pimephales	promelas	N/A	63.18					
Ptychocheilus	lucius	N/A	5.440					
Jordanella	floridae	15.98	40.58					
Lepomis	macrochirus	15.27	21.60					
Oryzias	latipes	N/A	48.60	OPP ACR should be considered qualitative due to chronic test duration (14-d)				
Oreochromis	mossambica	N/A	N/A	ACR not calculated because no NOAEC was available				
Channa	punctata	N/A	4.234	OPP ACR should be considered qualitative due to chronic test duration (15-d)				
Cyprinodon	variegatus	8.5	12.75					
All Taxa FACR	(OPP Option 1) ^b	10.54	15.42					
All Taxa FACR	(OPP Option 2) ^c	10.54	12.61					
All Invertebrate	S	5.942	13.22					

Table 7. ACRs by species and calculation method.

^{a –} An ACR following the Guidelines could not be calculated, as there were no acute and chronic studies from same study/laboratory/test water. The resulting qualitative ACR was included because no other ACRs for invertebrate taxa were available.

^b-OPP all taxa ACR does not include qualitative ACRs for *O. latipes* or *C. punctata*. OW all taxa ACR does include the "qualitative" *D. magna* ACR.

^c – Does not include ACR for *P. promelas* ((>10x spread and acutely insensitive).

Table 8. Summary and comparison of freshwater chronic values for malathion.

Magnitude relative to ALB is the OPP ALB/OW value, the ratio for the OPP value/OW value for each value comparison. A ratio <1 indicates the OPP value is lower than the OW value.

Pesticide	OPP Most Sensitive ALB (Year published, species)	OW Illustrative ALC (# of ACRs filled, magnitude relative to ALB)	OW Invertebrate-only HC05/2 (# of ACRs filled, magnitude relative to ALB)
Malathion	0.06 μg/L (2016, Daphnia magna)	0.08 μg/L (illustrative ALC example calculated for this analysis; 0.75X)	0.14 μg/L (See Table 7 for ACRs, 0.43X)

1.1.4.3 Malathion References

ECOREF 6449: Dortland, R.J. 1980. Toxicological Evaluation of Parathion and Azinphosmethyl in Freshwater Model Ecosystems. Versl. Landbouwkd. Onderz., 898: 1-112.

ECOTOX 11888: Haider, S., and R.M. Inbaraj (1986). Relative Toxicity of Technical Material and Commercial Formulation of Malathion and Endosulfan to a Freshwater Fish, *Channa punctatus* (Bloch). Ecotoxicol. Environ. Saf., 11, (3), 347-351. doi:10.1016/0147-6513(86)90107-7. ECOREF#:11888.

ECOTOX 77525: Van der Schalie, W.H., T.R. Shedd, M.W. Widder, and L.M. Brennan (2004). Response Characteristics of an Aquatic Biomonitor Used for Rapid Toxicity Detection. J. Appl. Toxicol. 24(5): 387-394. doi:10.1002/jat.1028.

ECOTOX 89099: Wolfe, M.F., D.E. Hinton, and J.N. Seiber (1995). Aqueous Sample Preparation for Bioassay Using Supercritical Fluid Extraction. Environ. Toxicol. Chem. 14(6): 1001-1009. doi:10.1002/etc.5620140611.

ECOTOX 8977: Shim, J.C., and L.S. Self (1973). Toxicity of Agricultural Chemicals to Larvivorous Fish in Korean Rice Fields. Trop. Med. 15(3): 123-130.

MRID 05009242; Sanders, H.O. 1969. Toxicity of Pesticides to the Crustacean Gammarus lacustris. Tech.Pap.No.25, U.S.D.I., Bur. Sports Fish. Wildl., Fish Wildl. Serv., Washington, DC, 18 p.

MRID 40098001: Mayer, F.L. and M.R. Ellersieck. 1986. Manual of acute toxicity: Interpretation and data base for 410 chemicals and 66 species of freshwater animals. Resour. Publ. No.160, U.S. Dep. Interior, Fish Wildl. Serv., Washington, DC. 505 p.

MRID 41029701: Burgess, D. 1989. Acute flow-through toxicity of Cythion 57% EC to Daphnia magna: Report No. 37394. Unpublished study prepared by Analytical Bio-Chemistry Labs Inc. 197 p.

MRID 48078003: Anonymous. 1968. Malathion Technical Toxicity to Rainbow Trout; Test Number 105. Project Number: MB/69. Unpublished study prepared by Animal Biology Laboratory. 13 p.

Bailey, H.C., and D.H.W. Liu. 1980. Lumbriculus variegatus, a Benthic Oligochaete, as a Bioassay Organism. ASTM Spec. Tech. Publ., 205-215.

Beaman, J.R., R. Finch, H. Gardner, F. Hoffmann, A. Rosencrance, and J.T. Zelikoff. 1999. Mammalian Immunoassays for Predicting the Toxicity of Malathion in a Laboratory Fish Model. J. Toxicol. Environ. Health Part A 56(8): 523-542. doi:10.1080/00984109909350175.

Bender, M.E., 1969a. The Toxicity of the Hydrolysis and Breakdown Products of Malathion to Fathead minnow - University of Michigan.

Bender, M.E. 196b. Uptake and Retention of Malathion by the Carp. Prog. Fish-Cult. 31(3): 155-159.

Bender, M.E., and J.R. Westman. 1976. The Toxicity of Malathion and Its Hydrolysis Products to the Eastern Mudminnow, Umbra pygmaea (DeKay). Chesapeake Sci. 17(2): 125-128.

Beyers, D.W., T.J. Keefe and C.A. Carlson. 1994. Toxicity of carbaryl and malathion to two federally endangered fishes, as estimated by regression and ANOVA. Environ. Toxicol. Chem. 13(1): 101-107.

Biesinger, K.E. 1973. The Chronic Toxicity of Some Pesticides to Daphnia magna. Interim Rep. No. ROAP 16AAK, Task 06, Natl. Water Qual. Lab., Duluth, MN, 5 p.

Birge, W.J., J.A. Black, and D.M. Bruser 1979. Toxicity of Organic Chemicals to Embryo-Larval Stages of Fish. EPA-560/11-79-007, U.S.EPA, Washington, D.C., 60 p.

Blakemore, G.; Burgess, D. 1990. Chronic Toxicity of Cythion to Daphnia magna Under Flowthrough Test Conditions: Lab Project Number: 37399. Unpublished study prepared by Analytical BioChemistry Laboratories, Inc. 391 p.

Bowman, J. 1989. Acute Flow-Through Toxicity of Cythion Technical to Sheepshead Minnow (Cyprinodon variegatus): Report No. 37397. Unpublished study prepared by Analytical Biochemistry Laboratories, Inc. 205 p.

Burgess, D. 1989. Acute flow-through toxicity of Cythion 57% EC to *Daphnia magna*: Report No. 37394. Unpublished study prepared by Analytical Bio-Chemistry Labs Inc. 197 p.

Cano, E., A. Jimenez, J.A. Cabral, and M.E. Ocete (1999). Acute Toxicity of Malathion and the New Surfactant "Genapol OXD 080" on Species of Rice Basins. Bull. Environ. Contam. Toxicol. 63(1): 133-138. doi:10.1007/s001289900958.

Cohle, P. 1989. Early Life Stage Toxicity of Cythion to Rainbow Trout (Oncorhynchus mykiss) in a Flow-through System: Lab Report Number: 37400. Unpublished study prepared by Analytical Bio-Chemistry Laboratories, Inc. 1068 p.

Cope, O.B. 1965. Sport Fishery Investigations. Fish and Wildlife Service Circular 226, Effects of Pesticides on Fish and Wildlife. Washington, DC, 51-63.

Cope, O.B. 1966. Contamination of the Freshwater Ecosystem by Pesticides. J. Appl. Ecol., 3, 33-44. doi:10.2307/2401442.

Dortland, R.J. 1980. Toxicological Evaluation of Parathion and Azinphosmethyl in Freshwater Model Ecosystems. Versl. Landbouwkd. Onderz., 898: 1-112.

Dwyer, F.J., L.C. Sappington, D.R. Buckler and S.B. Jones. 1995. Use of surrogate species in assessing contaminant risk to endangered and threatened fishes. EPA/600/R-96/029, U.S. EPA, Washington, D.C.

Eaton, J.G. 1970. Chronic Malathion Toxicity to the Bluegill (Lepomis macrochirus Rafinesque). Water Res. 4(10): 673-684.

Federle, P.F., and W.J. Collins. 1976. Insecticide Toxicity to Three Insects from Ohio Ponds. Ohio J. Sci. 76(1): 19-24.

Foster, S., M. Thomas, and W. Korth. 1998. Laboratory-Derived Acute Toxicity of Selected Pesticides to Ceriodaphnia dubia. Australas. J. Ecotoxicol. 4(1): 53-59.

Gaufin, A.R., L.D. Jensen, A.V. Nebeker, T. Nelson, and R.W. Teel. 1965. Toxicity of Ten Organic Insecticides to Various Aquatic Invertebrates. Water Sewage Works, 12: 276-279.

Geiger, D.L., D.J. Call, and L.T. Brooke. 1988. Acute Toxicities of Organic Chemicals to Fathead Minnows (Pimephales promelas) Volume IV. Center for Lake Superior Environmental Studies, University of Wisconsin, Superior, WI, 4, 355 p.

Gries, T. and V. Purghart. 2001. Malathion Technical: Acute Toxicity Test with Bluegill Sunfish (Lepomis macrochirus) Under Flow-Through Conditions: Final Report. Project Number: 314/FYF, 1005/018/105. Unpublished study prepared by Springborn Laboratories (Europe) Ag. 58 p.

Hansen and Parrish Hansen: D.J., and P.R. Parrish. 1977. Suitability of Sheepshead Minnows (Cyprinodon variegatus) for Life-Cycle Toxicity Tests. ASTM Spec. Tech. Publ., 117-126. (ECOTOX#:5074).

Hansen, C.R., Jr., and J.A. Kawatski 1976. Application of 24-Hour Postexposure Observation to Acute Toxicity Studies with Invertebrates. J. Fish. Res. Board Can. 33(5): 1198-1201. doi:10.1139/f76-153.

Henderson, C., and Q.H. Pickering. 1958. Toxicity of Organic Phosphorus Insecticides to Fish. Trans. Am. Fish. Soc. 87: 39-51.

Hermanutz, R.O. 1978. Endrin and Malathion Toxicity to Flagfish (Jordanella floridae). Arch. Environ. Contam. Toxicol. 7(2): 159-168.

Hermanutz, R. O., Eaton, J. G., and Mueller, L. H. 1985. Toxicity of Endrin and Malathion Mixtures to Flagfish (Jordanella floridae). Arch. Environ. Contam. Toxicol. 14: 307-314.

Hermens, J., H. Canton, N. Steyger, and R. Wegman. 1984. Joint Effects of a Mixture of 14 Chemicals on Mortality and Inhibition of Reproduction of Daphnia magna. Aquat. Toxicol. 5(4): 315-322.

Holck, A.R., and C.L. Meek (1987). Dose-Mortality Responses of Crawfish and Mosquitoes to Selected Pesticides. Am. Mosq. Control Assoc. J. 3(3): 407-411.

Johnson, C.R. 1980. The Effects of Five Organophosphorus Insecticides on Thermal Stress in Tadpoles of the Pacific Tree Frog, Hyla regilla. Zool. J. Linn. Soc. 69(2): 143-147.

Kaur, H., and H.S. Toor. 1995. Toxicity of Some Insecticides to the Fingerlings of Indian Major Carp Cirrhina mrigala (Hamilton). Indian J. Ecol. 22(2): 140-142.

Keller, A.E., and D.S. Ruessler. 1997. The Toxicity of Malathion to Unionid Mussels: Relationship to Expected Environmental Concentrations. Environ. Toxicol. Chem. 16(5): 1028-1033. doi:10.1002/etc.5620160524.

Key, P.B., and M.H. Fulton. 2006. Correlation Between 96-h Mortality and 24-h Acetylcholinesterase Inhibition in Three Grass Shrimp Larval Life Stages. Ecotoxicol. Environ. Saf. 63(3): 389-392.

Kikuchi, M., Y. Sasaki, and M. Wakabayashi. 2000. Screening of Organophosphate Insecticide Pollution in Water by Using Daphnia magna. Ecotoxicol. Environ. Saf. 47(3): 239-245. doi:10.1006/eesa.2000.1958.

Kumar, K., and B.A. Ansari. 1984. Malathion Toxicity: Skeletal Deformities in Zebrafish (Brachydanio rerio, Cyprinidae). Pestic. Sci., 15, 107-111.

Li, S.N., and D.F. Fan. 1996. Correlation Between Biochemical Parameters and Susceptibility of Freshwater Fish to Malathion. J. Toxicol. Environ. Health 48(4): 413-418.

Liong, P.C., W.P. Hamzah, and V. Murugan. 1988. Toxicity of Some Pesticides Towards Freshwater Fishes. Fish. Bull. Dep. Fish. (Malays.) No. 57, 13 p.

Lui, O. S., M. A. Ambak, and A. K. M. Mohsin. 1983. A Comparison of Tolerance Level of Tilapia to Malathion on Clear and Muddy Bottom. Malays. Appl. Biol., 12, (2), 25-29. (ECOTOX #:11603).

Maas, J.L. 1982. Toxicity of Pesticides. Report No.82, Laboratory for Ecotoxicology, Institute for Inland Water Management and Waste Water Treatment, 15, 4 p.

Macek, K.J. and W.A. McAllister. 1970. Insecticide susceptibility of some common fish family representatives. Trans. Am. Fish. Soc. 99(1): 20-27.

Macek, K.J., C. Hutchinson, and O.B. Cope. 1969. The Effects of Temperature on the Susceptibility of Bluegills and Rainbow Trout to Selected Pesticides. Bull. Environ. Contam. Toxicol. 4(3): 174-183.

Mayer, F.L. and M.R. Ellersieck. 1986. Manual of acute toxicity: Interpretation and data base for 410 chemicals and 66 species of freshwater animals. Resour. Publ. No.160, U.S. Dep. Interior, Fish Wildl. Serv., Washington, DC. 505 p.

McKim, J.M., P.K. Schmieder, G.J. Niemi, R.W. Carlson, and T.R. Henry. 1987. Use of Respiratory-Cardiovascular Responses of Rainbow Trout (Salmo gairdneri) in Identifying Acute Toxicity Syndromes in Fish: Part 2. Malathion, Carbaryl, Acrolein and Benzaldehyde. Environ. Toxicol. Chem. 6: 313-328.

Mount, D.I., and C.E. Stephan. 1967. A Method for Establishing Acceptable Toxicant Limits for Fish - Malathion and the Butoxyethanol Ester of 2,4-D. Trans. Am. Fish. Soc. 96(2): 185-193.

Olvera-Hernandez, E., L. Martinez-Tabche, and F. Martinez-Jeronimo. 2004. Bioavailability and Effects of Malathion in Artificial Sediments on Simocephalus vetulus (Cladocera: Daphniidae). Bull. Environ. Contam. Toxicol. 73(1): 197-204.

Palawski, D., J.B. Hunn, and F.J. Dwyer. 1985. Sensitivity of Young Striped Bass to Organic and Inorganic Contaminants in Fresh and Saline Waters. Trans. Am. Fish. Soc. 114(5): 748-753.

Pandey, P.K., N.K. Singh, B.P. Choudhary, and G.K. Thakur (1981). Effect of Organophosphorus Insecticide, Malathion, on the Haematology of Channa punctatus (Bloch). J. Inl. Fish. Soc. India, 13(2): 120-121.

Pandey, S., R. Kumar, S. Sharma, N.S. Nagpure, S.K. Srivastava, and M.S. Verma (2005). Acute Toxicity Bioassays of Mercuric Chloride and Malathion on Air-Breathing Fish Channa punctatus (Bloch). Ecotoxicol. Environ. Saf. 61(1): 114-120.

Pickering, Q.H., C. Henderson, and A.E. Lemke 1962. The Toxicity of Organic Phosphorus Insecticides to Different Species of Warmwater Fishes. Trans. Am. Fish. Soc. 91: 175-184.

Post, G. and T.R. Schroeder. 1971. The toxicity of four insecticides to four salmonid species. Bull. Environ. Contam. Toxicol. 6(2): 144-155.

Ren, Z., J. Zha, M. Ma, Z. Wang, and A. Gerhardt. 2007. The Early Warning of Aquatic Organophosphorus Pesticide Contamination by On-Line Monitoring Behavioral Changes of Daphnia magna. Environ. Monit. Assess. 134(1-3): 373-383.

Sanders, H.O. 1969. Toxicity of Pesticides to the Crustacean Gammarus lacustris. Tech.Pap.No.25, U.S.D.I., Bur. Sports Fish. Wildl., Fish Wildl. Serv., Washington, DC, 18 p.

Sanders, H.O. 1970. Pesticide Toxicities to Tadpoles of the Western Chorus Frog Pseudacris triseriata and Fowler's Toad Bufo woodhousii fowleri. Copeia, 2: 246-251.

Sanders, H.O. 1972. Toxicity of Some Insecticides to Four Species of Malacostracan Crustaceans. Tech. Pap. Bur. Sport Fish. Wildl., 66, 19 p.

Sanders, H.O., and O.B. Cope. 1966. Toxicities of Several Pesticides to Two Species of Cladocerans. Trans. Am. Fish. Soc. 95(2): 165-169.

Schoettger, R.A. 1970. Fish-Pesticide Research Laboratory. In: Prog. in Sport Fish. Res., U.S. Dep. Interior, Bur. Sport Fish. and Wildl. Res., Publ. No. 106, 2-40.

Snawder, J.E., and J.E. Chambers. 1989. Toxic and Developmental Effects of Organophosphorus Insecticides in Embryos of the South African Clawed Frog. J. Environ. Sci. Health Part B Pestic. Food Contam. Agric. Wastes 24(3): 205-218.

Sparling, D.W., and G. Fellers. 2007. Comparative Toxicity of Chlorpyrifos, Diazinon, Malathion and Their Oxon Derivatives to Larval Rana boylii. Environ. Pollut. 147(3): 535-539.

Stephan, C.E., D.I. Mount, D.J. Hansen, J.H. Gentile, G.A. Chapman and W.A. Brungs. 1985. Guidelines for Deriving Numerical National Water Quality Criteria for the Protection of Aquatic Organisms and their Uses. PB85-227049. Office of Research and Development. Duluth, MN, Narragansett, RI, Corvallis, OR. Sulaiman, A.H., A.R. Abdullah, and S.K. Ahmad. 1989. Toxicity of Malathion to Red Tilapia (Hybrid Tilapia mossambica x Tilapia nilotica): Behavioural, Histopathological and Anti-Cholinesterase Studies. Malays. Appl. Biol. 18(2): 163-170.

Sweilum, M.A. 2006. Effect of Sublethal Toxicity of some Pesticides on Growth Parameters, Haematological Properties and Total Production of Nile Tilapia (Oreochromis niloticus L.) and Water Quality of Ponds. Aquac. Res. 37(11): 1079-1089.

Ton, C., Y. Lin, and C. Willett 2006. Zebrafish as a Model for Developmental Neurotoxicity Testing. Birth Defects Res. A Clin. Mol. Teratol. *76*(7): 553-567.

U.S. EPA. 1976. Quality criteria for water. PB-263 943. Office of Water and Hazardous Materials. Washington D.C. July 26, 1976.

U.S. EPA. 1985. Guidelines for derving numerical national water critera for the protection of aquatic organisms and their uses. United States Environmental Protection Agency. Stephan, C.E., D.I. Mount, D.J. Hansen, J.H. Gentile, G.A. Chapman and W.A. Brungs. PB85-227049. National Technical Information Service, Springfield, VA. U.S.

U.S. EPA. 2005. Use of acute-to-chronic ratios in support of ecological risk assessment of pesticides. Memo to Steve Bradbury, Director, Environmental Fate and Effects Division. Office of Prevention, Pesticides, and Toxic Substances. June 7, 2005.

U.S. EPA. 2007. Risks of malathion use to the federally-listed California red legged frog (Rana aurora draytonii). Pesticide effects determination. Office of Pesticide Programs. Washington, D.C. 20460. October 19, 2007.

U.S. EPA. 2010. Risks of malathion use to the federally threatened delta smelt (*Hypomesus transpacificus*) and California tiger salamander (*Ambystoma californiense*), Central California distinct population segment, and the federally endangered California tiger salamander, Santa Barbara County and Sonoma County distinct population segments. Environmental Fate and Effects Division, OPP. Washington, D.C. 20460. September 29, 2010.

U.S. EPA. 2024. Draft Comparison of Aquatic Life Protective Values Developed for Pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Clean Water Act (CWA). EPA-820-D-24-002.

Vedamanikam, V.J. 2009. Formation of Resistance in the Chironomus plumosus to Four Pesticides over 45 Generations. Toxicol. Environ. Chem. 91(1): 187-194.

Whitten, B.K., and C.J. Goodnight. 1966. Toxicity of Some Common Insecticides to Tubificids. J. Water Pollut. Control Fed. 38(2): 227-235.

1.1.5 Comparison of Aquatic Life Toxicity Values for Diazinon: Data Sources and Considerations

Data used in the *Draft Comparison of Aquatic Life Protective Values Developed for Pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Clean Water Act (CWA)* (U.S. EPA 2024) for diazinon were obtained from the 2005 diazinon aquatic life criteria (ALC) document (U.S. EPA 2005a), which serves as the based dataset, supplemented with an update to this data from EPA ECOTOX Knowledgebase in 2010.

1.1.5.1 Diazinon Acute Toxicity Data

Acute data for diazinon were obtained from the 2005 diazinon aquatic life criteria (ALC) document (U.S. EPA 2005a), which serves as the based dataset, supplemented with an update to this data from ECOTOX in 2010. (See Table 1.) The ECOTOX 2010 update included additional LC₅₀s for *Ceriodaphnia dubia*, and one LC₅₀ (and SMAV) for *Chironomus riparius* not in the ALC document. The OPP pesticide effects determination document that served as the basis for the invertebrate OPP benchmark concentration was also examined (U.S. EPA 2007). The invertebrate (*Ceriodaphnia dubia*) and fish (*Oncorhynchus mykiss*) tests that served as the basis for the OPP acute benchmarks were both included in the ALC document and/or the 2010 ECOTOX update.

The final diazinon acute dataset consisted of 27 SMAVs and 21 GMAVs, of which 14 SMAVs and 11 GMAVs were for invertebrate taxa. Ranked species and genus mean acute values for all invertebrates included in this analysis are listed in Table 2 below.

OW MDR Group ^a	Species	LC50/ EC50 (ug/L)	SMAV (µg/L)	GMAV (µg/L)	Reference
Н	Planaria, Dugesia tigrina	(µg / L) 11,640	11,640	11,640	Phipps 1988
Н	Ogliochate, Lumbriculus variegates	9,980	-		Phipps 1988
Н	Ogliochate (adult), Lumbriculus variegates	9,700	-		Brooke 1989
Н	Ogliochate, Lumbriculus variegates	6,160	8,417	8,417	Ankley and Collyard 1995
G	Snail (2.4 g), Gillia altilis	11,000	11,000	11,000	Robertson and Mazzella 1989
G	Apple snail (1 d), Pomacea paludosa	2,950	-		Call 1993
G	Apple snail (7 d), <i>Pomacea paludosa</i>	3,270	-		Call 1993
G	Apple snail (7 d), Pomacea paludosa	3,390	3,198	3,198	Call 1993
D	Cladoceran (<24 hr), Ceriodaphnia dubia	0.57			Norberg-King 1987
D	Cladoceran (<24 hr), <i>Ceriodaphnia dubia</i>	0.66			Norberg-King 1987
D	Cladoceran (<24 hr), Ceriodaphnia dubia	0.57			Norberg-King 1987

 Table 1. Acute toxicity data of diazinon to freshwater aquatic organisms.

OW	a •	LC50/ SMAV GMA		GMAV	AV		
MDR Group ^a	Species	EC50 (µg/L)	(µg/L)	(µg/L)	Reference		
D	Cladoceran (<24 hr),	1			Norberg-King 1987		
	Ceriodaphnia dubia	-					
D	Ciadoceran (<24 nr), Ceriodaphnia dubia	0.6			Norberg-King 1987		
D	Cladoceran (<6 hr),	0.66			Norberg-King 1987		
	Ceriodaphnia dubia	0.00					
D	Ciadoceran (<48 nr), Ceriodaphnia dubia	0.35	-		Norberg-King 1987		
D	Cladoceran (<48 hr), Ceriodaphnia dubia	0.35	-		Norberg-King 1987		
D	Cladoceran (<6 hr),	0.25	_		Norberg-King 1987		
	Cladocaran (<24 hr)						
D	Ceriodaphnia dubia	0.33	-		Norberg-King 1987		
D	Cladoceran (<48 hr),	0.35	-		Norberg-King 1987		
	Ceriodaphnia dubia						
D	Cradoceran (<48 m), Ceriodaphnia dubia	0.59	-		Norberg-King 1987		
D	Cladoceran (<48 hr),	0.43	_		Norberg-King 1987		
	Ceriodaphnia dubia	0.45					
D	Cladoceran (<48 hr), <i>Ceriodaphnia dubia</i>	0.35	-		Norberg-King 1987		
D	Cladoceran (<48 hr),	0.36	-		Norberg-King 1987		
	Cladoceran (<48 hr)						
D	Ceriodaphnia dubia	0.5	-		Ankley et al. 1991		
D	Cladoceran (<24 hr),	0.58	-		Bailey et al. 1997		
	Ceriodaphnia dubia						
D	Craioceran (<24 m), Ceriodaphnia dubia	0.48	-		Bailey et al. 1997		
D	Cladoceran (<24 hr),	0.26	-		Bailey et al. 1997		
	Cladocaron (224 hr)						
D	Cradoceran (<24 m), Ceriodaphnia dubia	0.29	-		Bailey et al. 1997		
D	Cladoceran (<24 hr),	0.38	_		Bailey et al. 2001		
	Ceriodaphnia dubia	0.50					
D	Cladoceran (<24 hr), Ceriodaphnia dubia	0.33	-		Bailey et al. 2001		
D	Cladoceran (<24 hr),	0.45			Panka at al. 2002		
	Ceriodaphnia dubia	0.43	-		Baliks et al. 2005		
D	Cladoceran (<24 hr), <i>Ceriodaphnia dubia</i>	0.21	0.4248	0.4248	Banks et al. 2005		
D	Cladoceran (<20 hr),	0.96	-		Vilkas 1976		
	Cladoceran (<24 hr).						
D	Daphnia magna	1.5	-		Dortland 1980		
D	Cladoceran (<48 hr),	0.8	1.048		Ankley et al. 1991		
	Cladoceran (1st instar).				Cope 1965a: Sanders and Cope		
D	Daphnia pulex	0.90	-		1966		

OW MDR Group ^a	Species	LC50/ EC50 (ug/L)	SMAV (µg/L)	GMAV (µg/L)	Reference
D	Cladoceran (1st instar), Daphnia pulex	(µg/L) 0.8	-		Johnson and Finley 1980; Mayer and Ellersieck 1986
D	Cladoceran (<48 hr), Daphnia pulex	0.65	0.7764	0.9022	Ankley et al. 1991
D	Cladoceran (1st instar), Simocephalus serrulatus	1.8	-		Cope 1965a; Sanders and Cope 1966; Mayer and Ellersieck 1986
D	Cladoceran (1st instar), Simocephalus serrulatus	1.4	1.587	1.587	Sanders and Cope 1966; Johnson and Finley 1980; Mayer and Ellersieck 1986
Е	Amphipod (mature), Gammarus fasciatus	2.04	2.04		Johnson and Finley 1980; Mayer and Ellersieck 1986
Е	Amphipod (mature), Gammarus pseudolimnaeus	16.82	16.82	5.858	Hall and Anderson 2004
Е	Amphipod (7-14 d), <i>Hyalella azteca</i>	6.51	6.51	6.510	Ankley and Collyard 1995
F	Stonefly (larva, 30-35 mm), Pteronarcys californica	25	25	25.000	Cope 1965a; Sanders and Cope 1968; Johnson and Finley 1980; Mayer and Ellersieck 1986
F	Midge (2nd-3rd instar), Chironomus riparius	450	450		Brooke 1989
F	Midge (3rd instar), Chironomus tentans	10.7	10.7	69.39	Ankley and Collyard 1995
А	Cutthroat trout (2.0 g), Oncorhynchus clarki	1,700	-		Johnson and Finley 1980; Mayer and Ellersieck 1986
А	Cutthroat trout (2.0 g), Oncorhynchus clarki	2,760	2,166		Mayer and Ellersieck 1986
А	Rainbow trout (3.7 cm), Oncorhynchus mykiss	400	-		Beliles 1965
А	Rainbow trout (1.20 g), Oncorhynchus mykiss	90	-		Cope 1965a; Johnson and Finley 1980; Mayer and Ellersieck 1986
А	Rainbow trout (25-50 g), Oncorhynchus mykiss	3,200	-		Bathe et al. 1975a
А	Rainbow trout, Oncorhynchus mykiss	90	-		Ciba-Giegy 1976
А	Rainbow trout, Oncorhynchus mykiss	1,350	425.8		Meier et al. 1979; Dennis et al. 1980
А	Chinook salmon (alevin), Oncorhynchus tshawytscha	29,500	29,500	3,008	Pincetich 2004; Viant et al. 2006
А	Brook trout (1 yr), Salvelinus fontinalis	800	-		Allison and Hermanutz 1977
А	Brook trout (1 yr), Salvelinus fontinalis	450	-		Allison and Hermanutz 1977
А	Brook trout (1 yr), Salvelinus fontinalis	1,050	723.0		Allison and Hermanutz 1977
А	Lake trout (3.20 g), Salvelinus namaycush	602	602	659.8	Johnson and Finley 1980; Mayer and Ellersieck 1986
В	Splittail (larva, 6 wk), Pogonichthys macrolepidotus	8,900	8,900	8,900	Teh et al. 2004

OW MDR Group ^a	Species	LC50/ EC50 (µg/L)	SMAV (µg/L)	GMAV (µg/L)	Reference
В	Zebrafish (0.4 g), Danio rerio	8,000	8,000	8,000	Keizer et al. 1991
В	Fathead minnow (juvenile), Pimephales promelas	6,600	-		Allison and Hermanutz 1977
В	Fathead minnow (juvenile), Pimephales promelas	6,800	-		Allison and Hermanutz 1977
В	Fathead minnow (juvenile), <i>Pimephales promelas</i>	10,000	-		Allison and Hermanutz 1977
В	Fathead minnow (newly hatched larva), <i>Pimephales promelas</i>	6,900	-		Jarvinen and Tanner 1982
В	Fathead minnow (juvenile), Pimephales promelas	9,350	7,804	7,804	University of Wisconsin- Superior 1988
В	Goldfish (2.5-6.0 cm), Carassius auratus	9,000	9,000	9,000	Beliles 1965
В	Flagfish (6 wk), Jordanella floridae	1,500	-		Allison and Hermanutz 1977
В	Flagfish (7 wk), Jordanella floridae	1,800	1,643	1,643	Allison and Hermanutz 1977
В	Guppy (0.6 g), Poecilia reticulata	800	800	800	Keizer et al. 1991
В	Bluegill (1 yr), Lepomis macrochirus	480	-		Allison and Hermanutz 1977
В	Bluegill (1 yr), Lepomis macrochirus	440	459.6	460	Allison and Hermanutz 1977
В	Bluegill (0.8 g), Lepomis macrochirus	120°	-		Meier et al. 1979; Dennis et al. 1980
В	Bluegill (1.00 g), Lepomis macrochirus	168.0 ^c			Johnson and Finley 1980; Mayer and Ellersieck 1986
С	Green frog (stage 8), Rana clamitans	50	50	50	Harris et al. 1998

a MDR Groups – Freshwater:

A. the family Salmonidae in the class Osteichthyes

B. a second family in the class Osteichthyes, preferably a commercially or recreationally important warmwater species (e.g., bluegill, channel catfish, etc.)

C. a third family in the phylum Chordata (may be in the class Osteichthyes or may be an amphibian, etc.)

D. a planktonic crustacean (e.g., cladoceran, copepod, etc.)

E. a benthic crustacean (e.g., ostracod, isopod, amphipod, crayfish, etc.)

F. an insect (e.g., mayfly, dragonfly, damselfly, stonefly, caddisfly, mosquito, midge, etc.)

G. a family in a phylum other than Arthropoda or Chordata (e.g., Rotifera, Annelida, Mollusca, etc.)

H. a family in any order of insect or any phylum not already represented.

OPP Acute Benchmark Values

The invertebrate OPP benchmark for diazinon is 0.105 μ g/L, which is ½ of the LC₅₀ for the cladoceran species *C. dubia* reported in a study by Banks et al. (2005). This test is the lowest of 24 LC₅₀s that comprise the SMAV for *C. dubia*.

The fish OPP benchmark for diazinon is 45 μ g/L, which is ½ of the LC₅₀ of 90 μ g/L, the two lowest LC₅₀s for rainbow trout (*Oncorhynchus mykiss*), which is the second most sensitive fish genera.

OW Acute Criterion

The acute criterion, or criterion maximum concentration (CMC) for diazinon in the 2005 ALC document is $0.17 \mu g/L$.

Genus-Level Invertebrate-only HC05

The acute HC₀₅ calculated from invertebrate genera shown in Table 2 above following the U.S. EPA (1985) methodology is $0.1935 \ \mu g/L$ (Table 3).

Genus	Species	SMAV	GMAV	GMAV Rank	
Dugesia	tigrina	11,640	11,640	11	
Gillia	altilis	11,000	11,000	10	
Lumbriculus	variegatus	8,417	8,417	9	
Pomacea	paludosa	3,198	3,198	8	
Chironomus	riparius	450	(0.20	7	
Chironomus	tentans	10.7	09.39	/	
Pteronarcys	californica	25	25	6	
Hyalella	azteca	6.51	6.51	5	
Gammarus	fasciatus	2.04	5 959	4	
Gammarus	pseudolimnaeus	16.82	5.858		
Simocephalus	serrulatus	1.587	1.587	3	
Daphnia	pulex	0.7764	0.0022	2	
Daphnia	magna	1.048	0.9022		
Ceriodaphnia	dubia	0.4248	0.4248	1	

Table 2. Diazinon invertebrate SMAVs and GMAVs (µg/L).

Table 3. HC05 calculated from the genus-level diazinon invertebrate-only data following th	le
U.S. EPA (1985) methodology.	

N	Rank	GMAV	ln(GMAV)	ln(GMAV) ²	P=R/(N+1)	sqrt(P)
11	4	5.858	1.768	3.13	0.3333	0.5774
	3	1.588	0.462	0.21	0.2500	0.5000
	2	0.9022	-0.103	0.01	0.1667	0.4082
	1	0.4248	-0.856	0.733	0.0833	0.2887
	Sum:		1.27	4.08	0.8333	1.7743
	$S^2 =$	79.414				
	L =	-3.635				
	A =	-1.642				
	HC ₀₅ =	0.1935				
Table 4. Summary and comparison of acute values for diazinon.

Magnitude relative to ALB is the OPP ALB/OW value, the ratio for the OPP value/OW value for each value comparison. A ratio <1 indicates the OPP value is lower than the OW value and a ratio >1 indicates the OPP value is higher than the OW value.

Pesticide	OPP Invertebrate ALB (lowest LC ₅₀ /2) (Year published, species)	OWALC (FAV/2) (Year published, # of genera, magnitude relative to ALB)	OW Genus-level Invertebrate-only HC ₀₅ /2 (# of genera, magnitude relative to ALB)	Notes
Diazinon	0.105 μg/L (2016; C. dubia)	0.170 μg/L (2005, 20 genera, 0.61X)	0.097 μg/L (11 genera, 1.1X)	<i>C. dubia</i> is the most sensitive species in the invertebrate dataset and FIFRA ALB is based on the lowest of 24 LC ₅₀ values that comprise the SMAV.

Figure 1 shows a genus-level sensitivity distribution for the diazinon dataset. Major taxonomic groups are delineated by different symbols, and invertebrate genera are identified by name. Lines denoting the CMC, invertebrate $HC_{05}/2$, and OPP benchmark values are also included.

Figure 1. Diazinon genus-level SD.

Symbols represent GMAVs calculated using all quantitative data from the aquatic life criteria document for diazinon (U.S. EPA 2005), additional data from a 2010 ECOTOX update, and the OPP benchmark document for diazinon (U.S. EPA 2007).

1.1.5.2 Diazinon Chronic Toxicity Data

For chemicals lacking sufficient chronic data to satisfy the minimum taxonomic data requirements, such as diazinon, OW calculates the final chronic value (FCV) as the final acute value (FAV) divided by the final acute-to chronic ratio (FACR). OPP will also apply ACRs to acute data for sensitive taxonomic groups to calculate chronic benchmarks when chronic test data are not available. Calculations of ACRs following OPP and OW methodologies were conducted, and the effects of these ACRs on the resulting OPP and OW chronic values were compared.

Data Sources

The data sources for this analysis include data originally reported in the 2005 aquatic life criteria (ALC) document (U.S. EPA 2005a), supplemented by additional test data from a 2010 ECOTOX search update for diazinon, as well as additional data obtained from OPP-authored pesticide effects determination (U.S. EPA 2007) and problem formulation (U.S. EPA 2008) reports.

ACR Calculations

ACR calculations following OW and OPP methodologies are described below. All available chronic diazinon data are shown in Table 5. All available acute data for species that also have chronic data are shown in Table 6. Table 7 lists all ACRs by species and calculation method. ACRs could be calculated for two invertebrate and four fish species following the OW approach, and for three invertebrate and four fish species following the OPP approach (U.S. EPA 2005b).

Invertebrate ACRs

Ceriodaphnia dubia

The ACR following the OW approach was 1.112, which was the geometric mean of ten acute values from the same laboratory (nine reported in Norberg-King 1987 and one reported in Ankley et al. 1991) divided by the MATC from a chronic test performed in the same laboratory (Norberg-King 1987). The ACR following the OPP approach was 1.709, using the same acute test data and the NOEC from the paired chronic test.

Daphnia magna

An ACR could not be calculated following the OW approach, because none of the acute tests were performed in the same laboratory using the same dilution water as any of the chronic tests. The ACR following the OPP approach was 5.190, which was the geometric mean of the three acceptable acute values divided by the geometric mean of the two acceptable NOECs.

Americamysis bahia

The ACR following the OW approach was 1.586, which was acute value reported in Nimmo et al. (1981) divided by the corresponding MATC for the paired chronic test. The ACR following the OPP approach was 2.295, which was acute value reported in Nimmo et al. (1981) divided by the corresponding NOEC for the paired chronic test

Vertebrate (Fish) ACRs

Salvelinus fontinalis

The ACR following the OW approach was >903.8, which was the geometric mean of three acceptable acute values reported in Allison and Hermanutz (1977) divided by the paired OW-calculated NOEC of <0.8 μ g/L. The ACR following the OPP approach was >1,315, which was the geometric mean of three acceptable acute values reported in Allison and Hermanutz (1977) divided by the paired OPP-calculated NOEC of <0.55 μ g/L.

Pimephales promelas

In both the OW- and OPP-approaches, two ACRs were calculated using paired data from Jarvinen and Tanner (1982) and University of Wisconsin-Superior (1988) - Norberg-King (1989). The final *P. promelas* ACRs, calculated as the geometric mean of the two paired tests, was 196.2 following the OW approach and 279.6 following the OPP approach.

Jordanella floridae

The ACR following the OW approach was 23.84, which was the geometric mean of two acute values reported in Allison (1977) divided by the paired MATC. The ACR following the OPP approach was 30.43, which was the geometric mean of two acute values reported in Allison (1977) divided by the paired NOEC.

Cyprinodon variegatus

The ACR following the OW approach was >2,979, which was the Goodman et al. (1979), Mayer (1987) acute value divided by the OW-calculated paired NOEC of <0.47 μ g/L. The ACR following the OPP approach was 3,590, which was the Goodman et al. (1979) – Mayer (1987) acute value divided by the OPP-calculated paired NOEC of 0.36 μ g/L.

Final ACRs

The final ACRs (FACRs) for the two approaches, expressed as the geometric mean of all available ACRs, is 53.01 following the OW approach, and 50.33 following the OPP approach. The OW-calculated FACR is larger the OPP FACR because the OPP FACR includes a relatively small ACR of 5.190 for *D. magna* that could not be calculated following the OW approach. When the comparison is limited to those ACRs both approaches have in common, the OPP FACR is 73.49.

FACRs following both approaches are comprised of two to three relatively small ACRs for acutely sensitive invertebrate taxa, and four much larger ACRs for acutely insensitive fish species. The Guidelines (U.S. EPA 1985) specify that if the ACRs appear to increase or decrease as the species mean acute values (SMAVs) increase, the FACR should be calculated as the geometric mean for those species whose SMAVs are close to the final acute value (FAV). This is the case for diazinon, and following the approach used in the 2005 ALC, the FACR is calculated as the geometric mean of the acutely sensitive invertebrate species. When limited to invertebrate species, the FACR following the OW approach is calculated as the geometric mean of the ACRs for *C. dubia* (1.112) and *A. bahia* (1.586). Because the final chronic value cannot be larger than the final acute value, the calculated ACR of 1.328 is rounded up to 2. The invertebrate-only

FACR following the OPP approach is the geometric mean of the ACRs for *C. dubia* (1.709), *D. magna* (5.190), and *A. bahia* (2.295), or 2.731.

Comparison of Freshwater Chronic Values for Diazinon

OPP Chronic Benchmarks

For diazinon, the freshwater invertebrate chronic benchmark is 0.17 μ g/L, which is a NOEC from a registrant submitted test for *Daphnia magna* (Table 27 in U.S. EPA 2007); and the freshwater fish chronic benchmark is <0.55 μ g/L, which a NOEC from Allison and Hermanutz (1977) for *Salvelinus fontinalis* based on reduced growth (Table 27 in U.S. EPA 2007).

OW Freshwater Chronic Values – All Taxa

Final chronic concentrations following the ACR methodology are calculated by dividing the final acute value by an ACR. For diazinon, the only available FAV calculated from all taxa is the FAV of 0.3397 μ g/L reported in the diazinon ALC (U.S. EPA 2005a). The final chronic value following the OW-ACR approach is 0.1699 μ g/L (0.3397 μ g/L \div 2), and the final chronic value following the OPP-ACR approach is 0.1244 μ g/L (0.3397 μ g/L \div 2.731).

OW Freshwater Chronic Values – Invertebrate Taxa

Final chronic concentrations for the invertebrate-only diazinon dataset are calculated by dividing the final invertebrate acute value by an ACR. This dataset was comprised of acute invertebrate test data found in the 2005 ALC and the 2010 ECOTOX update. The 2007 and 2008 OPP documents were also examined but these did not include additional acute invertebrate test data. The resulting acute HC₀₅ calculated from the 11 invertebrate genera using the Guidelines SSD was 0.1935 μ g/L. The final invertebrate chronic value following the OW-ACR approach is 0.09675 μ g/L (0.1935 μ g/L \div 2), and the final chronic value following the OPP-ACR approach is 0.07085 μ g/L (0.1935 μ g/L \div 2.731). Table 8 lists all chronic values calculated following the different approaches.

Table 5. Chronic test data for diazinon.

All concentrations expressed as µg/L. Bolded rows are chronic test results reported by OPP that differ from results reported by OW.

						Test data	reported in:						
Genus	Species	NOEC	LOEC	MATC	Reference	2005 ALC	2010 ECOTOX Search	2007 OPP	2008 OPP	Notes			
	Invertebrates												
Ceriodaphnia	dubia	0.22	0.52	0.338	Norberg-King 1987	Table 2	Х						
Daphnia	magna	0.24	0.64	0.392	Biesinger 1973		Х						
Daphnia	magna	0.17	< 0.32	0.233	Surprenant 1988			Table 27	Table 3				
Americamysis	bahia	2.1	4.4	3.040	Nimmo et al. 1981		Х		Table 3				
Vertebrates													
Salvelinus	fontinalis	<0.8	0.8	-	Allison and Hermanutz 1977	Table 2	X			OW calculated value			
Salvelinus	fontinalis	<0.55	0.55	-	Allison and Hermanutz 1977			Table 27	Table 3	OPP calculated value			
Pimephales	promelas	50	90	67.08	Jarvinen and Tanner 1982	Table 2	X						
Pimephales	promelas	16.5	38	24.97	Norberg-King 1989	Table 2	X			Paired with University of Wisconsin-Superior 1988			
	•												
Jordanella	floridae	54	88	68.93	Allison 1977	Table 2	Х						
	-			-		-			_				
Cyprinodon	variegatus	< 0.47	0.47	-	Goodman et al. 1979	Table 2	X			OW calculated value			
Cyprinodon	variegatus	0.39	0.56	0.47	Goodman et al. 1979				Table 3	OPP calculated value			

Table 6. Acute diazinon test data for species with chronic test data.

All concentrations expressed as μ g/L.

	_	EC50	OW-	OPP-		Test data	reported in:		Notes
Genus	Species	or LC50	ACR Acute Value	ACR Acute Value	Reference	2005 ALC	2010 ECOTOX	2008 OPP	
					Invertebrates				
Ceriodaphnia	dubia	0.35	0.3760	0.3760	Norberg-King 1987	Table 1	Х		OW, OPP-ACR acute value
Ceriodaphnia	dubia	0.35			Norberg-King 1987	Table 1	Х		OW, OPP -ACR acute value
Ceriodaphnia	dubia	0.25			Norberg-King 1987	Table 1	Х		OW, OPP -ACR acute value
Ceriodaphnia	dubia	0.33			Norberg-King 1987	Table 1	Х		OW, OPP -ACR acute value
Ceriodaphnia	dubia	0.35			Norberg-King 1987	Table 1	Х		OW, OPP -ACR acute value
Ceriodaphnia	dubia	0.59			Norberg-King 1987	Table 1	Х		OW, OPP -ACR acute value
Ceriodaphnia	dubia	0.43			Norberg-King 1987	Table 1	Х		OW, OPP -ACR acute value
Ceriodaphnia	dubia	0.35			Norberg-King 1987	Table 1	Х		OW, OPP -ACR acute value
Ceriodaphnia	dubia	0.36			Norberg-King 1987	Table 1	Х		OW, OPP -ACR acute value
Ceriodaphnia	dubia	0.5			Ankley et al. 1991	Table 1	Х		OW, OPP -ACR acute value
Ceriodaphnia	dubia	0.58			Bailey et al. 1997	Table 1	Х		
Ceriodaphnia	dubia	0.48			Bailey et al. 1997	Table 1	Х		
Ceriodaphnia	dubia	0.26			Bailey et al. 1997	Table 1	Х		
Ceriodaphnia	dubia	0.29			Bailey et al. 1997	Table 1	Х		
Ceriodaphnia	dubia	0.38			Bailey et al. 2001		Х		
Ceriodaphnia	dubia	0.33			Bailey et al. 2001		Х		
Ceriodaphnia	dubia	0.45			Banks et al. 2003		Х		
Ceriodaphnia	dubia	0.21			Banks et al. 2005		Х	Table 3	
Ceriodaphnia	dubia	0.57			Norberg-King 1987	Table 1	Х		Not used to calculate SMAV
Ceriodaphnia	dubia	0.66			Norberg-King 1987	Table 1	Х		Not used to calculate SMAV
Ceriodaphnia	dubia	0.57			Norberg-King 1987	Table 1	Х		Not used to calculate SMAV
Ceriodaphnia	dubia	>1.0			Norberg-King 1987	Table 1	Х		Not used to calculate SMAV
Ceriodaphnia	dubia	>0.6			Norberg-King 1987	Table 1	Х		Not used to calculate SMAV
Ceriodaphnia	dubia	0.66			Norberg-King 1987	Table 1	Х		Not used to calculate SMAV
Ceriodaphnia	dubia	0.57			Norberg-King 1987	Table 1	Х		Not used to calculate SMAV
Ceriodaphnia	dubia	0.66			Norberg-King 1987	Table 1	Х		Not used to calculate SMAV
Daphnia	magna	0.96	n/a	1.048	Vilkas 1976	Table 1	Х		OPP-ACR acute value
Daphnia	magna	1.5			Dortland 1980	Table 1	X		OPP-ACR acute value
Daphnia	magna	0.8			Ankley et al. 1991	Table 1	Х		OPP-ACR acute value
Americamysis	bahia	4.82	4.82	4.82	Nimmo et al. 1981	Table 1	X		OW, OPP-ACR acute value

		FC50	OW-	OPP-		Test data	reported in:		Notes		
Genus	Species	or LC50	ACR Acute Value	ACR Acute Value	Reference	2005 ALC	2010 ECOTOX	2008 OPP			
Americamysis	bahia	4.2			Suprenant 1988			Table 3			
Americamysis	bahia	8.5			Thursby and Berry 1988	Table 1	Х		Not used to calculate SMAV		
Americamysis	bahia	8.5			Cripe 1994	Table 1	Х		Not used to calculate SMAV		
Vertebrates											
Salvelinus	fontinalis	800	723.0	723.0	Allison and Hermanutz 1977	Table 1	Х		OW, OPP-ACR acute value		
Salvelinus	fontinalis	450			Allison and Hermanutz 1977	Table 1	Х		OW, OPP-ACR acute value		
Salvelinus	fontinalis	1,050			Allison and Hermanutz 1977	Table 1	Х		OW, OPP-ACR acute value		
Pimephales	promelas	6,900	6,900	6,900	Jarvinen and Tanner 1982	Table 1	Х		OW, OPP-ACR acute value		
Pimephales	promelas	9,350	9,350	9,350	University of Wisconsin- Superior 1988	Table 1	Х		OW, OPP-ACR acute value. Paired with Norberg-King 1989		
Pimephales	promelas	6,600			Allison and Hermanutz 1977	Table 1	Х				
Pimephales	promelas	6,800			Allison and Hermanutz 1977	Table 1	Х				
Pimephales	promelas	10,000			Allison and Hermanutz 1977	Table 1	Х				
Pimephales	promelas	4,300			Jarvinen and Tanner 1982	Table 1	Х		Not used to calculate SMAV		
Pimephales	promelas	2,100			Jarvinen and Tanner 1982	Table 1	Х		Not used to calculate SMAV		
Pimephales	promelas	10,300			Meier et al. 1979; Dennis et al. 1980	Table 1	Х		Not used to calculate SMAV		
Iondanalla	floridae	1 500	1 6 4 2	1 6 4 2	Allicon 1077	Tabla 1	v		OW ACP coute value		
Jordanella	floridae	1,300	1,045	1,045	Allison 1077	Table 1			OW ACP soute value		
Joraanella	jioriaae	1,000	I	I	AIIISUII 1977	Table I	Λ		Ow-ACK acute value		
Cyprinodon	variegatus	1,400	1,400	1,400	Goodman et al. 1979; Mayer 1987	Table 1	Х		OW-ACR acute value		

	Species	A	CR									
Genus		OW-	OPP-	Notes								
		ACR	ACR									
	Invertebrates											
Ceriodaphnia	dubia	1.112	1.709									
Daphnia	magna	N/A	5.190									
Americamysis	bahia	1.586	2.295									
			Ve	rtebrates								
Salvelinus	fontinalis	>903.8	>1,315									
Dimonhalos	promolas	196.2	279.6	Value in parentheses used lowest acute flow-through test.								
Timephales	prometus			Used in final "All Taxa" calculation.								
Jordanella	floridae	23.84	30.43									
Cyprinodon	variegatus	>2,979	3,590									
All Taxa		53.01	50.33									
All Invertebrate	es (FACR)	1.328	2.731	OW-FACR rounded up to 2.								

Table 7. ACRs by species and calculation method.

Table 8. Summary and comparison freshwater chronic values for diazinon.

Magnitude relative to ALB is the OPP ALB/OW value; a ratio < 1 means the OPP ALB value is lower than the OW value, a ratio >1 means the OPP ALB is higher than the OW value. Note: For GLI Tier II values, a default ACR of 18 is used when empirically derived ACRs are not available.

Pesticide	Most Sensitive OPP ALB (Year published, species)	OW ALC (# of ACRs filled, magnitude relative to ALB)	OW Invertebrate-only HC ₀₅ (# of ACRs filled, magnitude relative to ALB)
Diazinon	0.17 μg/L	0.17 μg/L	0.097 μg/L
	(2016, Daphnia magna)	(ALC, 1X)	(See Table 7 for ACRs, 1.8X)

1.1.5.3 Diazinon References

Allison, D.T. 1977. Use of Exposure Units for Estimating Aquatic Toxicity of Organophosphate Pesticides. EPA-600/3-77-077, U.S.EPA, Duluth, MN, 25 p. ECOREF#:9931.

Allison, D.T. and R.O. Hermanutz. 1977. Toxicity of diazinon to brook trout and fathead minnows. PB-269 293 or EPA-600/3-77-060. National Technical Information Service, Springfield, VA.

Ankley, G.T. and S.A. Collyard. 1995. Influence of piperonyl butoxide on the toxicity of organophosphate insecticides to three species of freshwater benthic invertebrates. Comp. Biochem. Physiol. 110C:149-155.

Ankley, G.T., J.R. Dierkes, D.A. Jensen and G.S. Peterson. 1991. Piperonyl butoxide as a tool in aquatic toxicological research with organophosphate insecticides. Ecotoxicol. Environ. Safety 21:266-274.

Bailey, H.C., J.L. Miller, M.J. Miller, L.C. Wiborg, L. Deanovic and T. Shed. 1997. Joint acute toxicity of diazinon and chlorpyrifos to Ceriodaphnia dubia. Environ. Toxicol. Chem. 16:2304-2308.

Bailey, H.C., J.R. Elphick, R. Krassoi and A. Lovell, A. 2001. Joint acute toxicity of diazinon and ammonia to Ceriodaphnia dubia. Environ. Toxicol. Chem. 20(12): 2877-2882.

Banks, K.E., S.H. Wood, C. Matthews and K.A. Thuesen. 2003. Joint acute toxicity of diazinon and copper to Ceriodaphnia dubia. Environ. Toxicol. Chem. 22: 1562-1567.

Banks, K.E., D.H. Hunter and D.J. Wachal. 2005. Diazinon in surface waters before and after a federally-mandated ban. Sci. Total Environ. 350: 86-93.

Banks, K.E., P.K. Turner, S.H. Wood and C. Matthews. 2005. Increased toxicity to Ceriodaphnia dubia in mixtures of atrazine and diazinon at environmentally realistic concentrations. Ecotoxicol. Environ. Safety 60(1): 28-36.

Bathe, R., K. Sachsse, L. Ullmann, W.D. Hormann, F. Zak and R. Hess. 1975a. The evaluation of fish toxicity in the laboratory. Proc. Eur. Soc. Toxicol. 16:113-124.

Beliles, R. 1965. Diazinon safety evaluation on fish and wildlife: Bobwhite quail, goldfish, sunfish and rainbow trout. U.S. Environmental Protection Agency, Office of Pesticide Programs registration standard.

Biesinger, K.E. 1973. The Chronic Toxicity of Some Pesticides to Daphnia magna. Interim Rep. No. ROAP 16AAK, Task 06, Natl. Water Qual. Lab., Duluth, MN, 5 p. ECOREF#:117172.

Brooke, L. 1989. Results of Freshwater Exposures with the Chemicals 2,4-D and Diazinon to the Larval Leopard Frog (Rana pipiens), Juvenile Fathead Minnows (Pimephales promelas), Larval Midge (Chironomus riparius) and Adult Oligochaete W. February 15th Memo to R.Spehar, U.S.EPA, Duluth, MN, 6 p.

Call, D.J. 1993. Validation study of a protocol for testing the acute toxicity of pesticides to invertebrates using the apple snail (Pomacea paludosa). Final Report to U.S. EPA Cooperative Agreement, No. CR 819612-01.

Ciba-Geigy Corporation. 1976. Reports of investigations made with respect to fish and wildlife requirements for diazinon and its formulated products. U.S. Environmental Protection Agency, Office of Pesticide Programs registration standard.

Cope, O.B. 1965a. Contamination of the freshwater ecosystem by pesticides. J. Appl. Ecol. 3(Supplement):33-44.

Cripe, G.M. 1994. Comparative Acute Toxicities of Several Pesticides and Metals to Mysidopsis bahia and Postlarval Penaeus duorarum. Environ. Toxicol. Chem. 13(11): 1867-1872. doi:10.1002/etc.5620131119. ECOREF#:13513.

Dennis, W.H., A.B. Rosencrance, W.F. Randall and E.P. Meier. 1980. Acid hydrolysis of military standard formulations of diazinon. J. Environ. Sci. Health B15:47-60.

Dortland, R.J. 1980. Toxicological evaluation of parathion and azinphosmethyl in freshwater model ecosystems. Agric. Res. Rep. (Versl. landbouwk. Onderz.) 898:1-112.

Goodman, L.R., D.J. Hansen, D.L. Coppage, J.C. Moore, and E. Matthews. 1979. Diazinon: Chronic Toxicity to, and Brain Acetylcholinesterase Inhibition in, the Sheepshead Minnow, Cyprinodon variegatus. Trans. Am. Fish. Soc., 108(5): 479-488. ECOREF#:5604. Hall, L.W. and R.D. Anderson. 2004. Acute Toxicity of Diazinon to the Amphipod, Gammarus pseudolimnaeus. (Data Report, April 8). University of Maryland, Agricultural Experiment Station, Queenstown, MD.

Harris, M.L., C.A. Bishop, J. Struger, B. Ripley and J.P. Bogart. 1998. The functional integrity of northern leopard frog (Rana pipiens) and green frog (Rana clamitans) populations in orchard wetlands. II. Effects of pesticides and eutrophic conditions on early life stage development. Environ. Toxicol. Chem. 17:1351-1363.

Jarvinen, A.W. and D.K. Tanner. 1982. Toxicity of selected controlled release and corresponding unformulated technical grade pesticides to the fathead minnow Pimephales promelas. Environ. Pollut. (Series A) 27:179-195.

Johnson, W.W. and M.T. Finley. 1980. Handbook of acute toxicity of chemicals to fish and aquatic invertebrates. Resource Publication 137. U.S. Fish and Wildlife Service, U.S. Department of Interior, Washington, DC.

Keizer, J., G. D'Agostino and L. Vittozzi. 1991. The importance of biotransformation in the toxicity of xenobiotics to fish. I. Toxicity and bioaccumulation of diazinon in guppy (Poecilia reticulata) and zebra fish (Brachydanio rerio). Aquat. Toxicol. 21:239-254.

Mayer, F.L., Jr. 1987. Acute toxicity handbook of chemicals to estuarine organisms. EPA/600/8-87/017. 274 pp.

Mayer, F.L., Jr. and M.R. Ellersieck. 1986. Manual of acute toxicity: interpretation and data base for 410 chemicals and 66 species of freshwater animals. Resource Publication No. 160, Fish and Wildlife Service, U.S. Department of Interior, Washington, DC. 505 p.

Meier, E.P., W.H. Dennis, A.B. Rosencrance, W.F. Randall, W.J. Cooper and M.C. Warner. 1979. Sulfotepp, a toxic impurity in formulations of diazinon. Bull. Environ. Contam. Toxicol. 23:158-164.

Nimmo, D.R., T.L. Hamaker, E. Matthews, and J.C. Moore. 1981. An Overview of the Acute and Chronic Effects of First and Second Generation Pesticides on an Estuarine Mysid. In: F.J. Vernberg, A. Calabrese, F.P. Thurberg, and W.B. Vernberg (Eds.), Biological Monitoring of Marine Pollutants, Academic Press, Inc., NY, 3-19. ECOREF#:4891.

Norberg-King, T.J. 1987. Toxicity Data on Diazinon, Aniline, 2,4-Dimethylphenol. U.S.EPA, Duluth, MN:11 p. (Memorandum to C.Stephan, U.S.EPA, Duluth, MN; D.Call and L.Brooke, Center for Lake Superior Environmental Studies, Superior, WI, August 31).

Norberg-King, T.J. 1989. An Evaluation of the Fathead Minnow Seven-Day Subchronic Test for Estimating Chronic Toxicity. Environ. Toxicol. Chem. 8(11): 1075-1089. ECOREF#:5313.

Phipps, G.L. 1988. Diazinon acute tests for criteria development. (Memorandum to R. Spehar, U.S. EPA, Duluth, MN. April 29).

Pincetich, C.A. 2004. Metabolic Effects of Pesticide Exposure During Embryogenesis in Medaka (Oryzias latipes) and Chinook Salmon (Oncorhynchus tshawytscha). Ph.D. Thesis, University of California, Davis, 139 p.

Robertson, J.B. and C. Mazzella. 1989. Acute toxicity of the pesticide diazinon to the freshwater snail Gillia altilis. Bull. Environ. Contam. Toxicol. 42:320-324.

Sanders, H.O. and O.B. Cope. 1968. The relative toxicities of several pesticides to naiads of three species of stoneflies. Limnol. Oceanogr. 13:112-117.

Stephan, C.E., D.I. Mount, D.J. Hansen, J.H. Gentile, G.A. Chapman and W.A. Brungs. 1985. Guidelines for Deriving Numerical National Water Quality Criteria for the Protection of Aquatic Organisms and their Uses. PB85-227049. Office of Research and Development. Duluth, MN, Narragansett, RI, Corvallis, OR.

Surprenant, D. C. 1988. The Chronic Toxicity of ¹⁴C-Diazinon to *Daphnia magna* Under Flow-Through Conditions. Report No. 88-4-2644. Conducted by Springborn Life Sciences, Inc., Wareham, MA. Submitted by CIBA-GEIGY Corporation, Greensboro, NC. EPA Accession [MRID] No. 407823-02.

Teh, S.J., G.H. Zhang, T. Kimball and F.C. Teh. 2004. Lethal and sublethal effects of esfenvalerate and diazinon on splittail larvae. American Fisheries Society Symposium. 2004. 243-253.

Thursby, G.B., and W.J. Berry. 1988. Acute Toxicity of Diazinon to Saltwater Animals. Letter to J. Scott and D.J. Hansen, Univ. of Rhode Island, Kingston, RI, 10 p. ECOREF#:73146.

U.S. EPA. 1985. Guidelines for derving numerical national water critera for the protection of aquatic organisms and their uses. United States Environmental Protection Agency. Stephan, C.E., D.I. Mount, D.J. Hansen, J.H. Gentile, G.A. Chapman and W.A. Brungs. PB85-227049. National Technical Information Service, Springfield, VA. U.S.

U.S. EPA. 2005a. Aquatic life ambient water quality criteria for diazinon. Office of Water. EPA-822-R-05-006. December 2005.

U.S. EPA. 2005b. Use of acute-to-chronic ratios in support of ecological risk assessment of pesticides. Memo to Steve Bradbury, Director, Environmental Fate and Effects Division. Office of Prevention, Pesticides, and Toxic Substances. June 7, 2005.

U.S. EPA. 2007. Risks of diazinon use to the federally listed California red legged frog (*Rana aurora draytonii*). Pesticide effects determination. Office of Pesticide Programs. Washington, D.C. 20460. July 20, 2007.

U.S. EPA. 2008. Problem formulation for the environmental fate and ecological risk, endangered species and drinking water assessments in support of the registration review of diazinon. Office of Pesticide Programs. Washington, D.C. 20460. March 26, 2008.

U.S. EPA. 2017. Aquatic life benchmarks for pesticide registration. Accessed July 11, 2017. <u>https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/aquatic-life-benchmarks-pesticide-registration</u>.

U.S. EPA. 2024. Draft Comparison of Aquatic Life Protective Values Developed for Pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Clean Water Act (CWA). EPA-820-D-24-002.

University of Wisconsin-Superior. 1988. Acute toxicities of organic chemicals to fathead minnows (Pimephales promelas). Vol. 4. Geiger, D.L., D.J. Call and L.T. Brooke (Eds.). Center for Lake Superior Environmental Studies, University of Wisconsin-Superior Press, Superior, WI. 355 p.

Viant, M.R., C.A. Pincetich, and R.S. Tjeerdema 2006. Metabolic Effects of Dinoseb, Diazinon and Esfenvalerate in Eyed Eggs and Alevins of Chinook Salmon (Oncorhynchus tshawytscha) Determined by 1H NMR Metabolomics. Aquat. Toxicol. 77(4): 359-371.

Vilkas, A. 1976. Acute toxicity of diazinon technical to the water flea, Daphnia magna Straus. U.S. Environmental Protection Agency, Office of Pesticide Programs registration standard.

1.1.6 Comparison of Aquatic Life Toxicity Values for Chlorpyrifos: Data Sources and Considerations

Data used in the *Draft Comparison of Aquatic Life Protective Values Developed for Pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Clean Water Act (CWA)* (U.S. EPA 2024) for chlorpyrifos were obtained from the 1986 OW criteria, which serves as the base dataset, supplemented with an update to this data from the EPA's ECOTOX Knowledgebase in 2010, and with additional data reported in the OPP's chlorpyrifos reregistration eligibility assessment document U.S. EPA (2000). There was no comparative analysis for chlorpyrifos chronic data.

1.1.6.1 Chlorpyrifos Acute Toxicity Data

Acceptable acute data for chlorpyrifos were obtained from the 1986 criteria, which serves as the base dataset, supplemented with an update to this data from ECOTOX in 2010, and with additional LC₅₀s reported in the chlorpyrifos re-registration eligibility assessment document U.S. EPA (2000). (See Table 1.) Four acute tests were included in U.S. EPA (2000) that were not in the 2010 ECOTOX update: two LC₅₀s ($0.1 \mu g/L$, $1.7 \mu g/L$) for *Daphnia magna*, including the value upon which the OPP invertebrate benchmark is based; an LC₅₀ of 8.2 $\mu g/L$ for the stonefly species *Classenia sabulosa*, and an LC₅₀ of 150 $\mu g/L$ for *Pimephales promelas*. The *C. sabulosa* LC₅₀ of 8.2 $\mu g/L$ was considered for inclusion but ultimately not included. This was a the 24-hr LC₅₀ from a test reported in Mayer and Ellersieck (1986) that also reported a 96-hr LC₅₀, due to the shorter exposure duration. Because the 96-hr result from this test was already represented, the 24-hr LC₅₀ of 8.2 $\mu g/L$ was not used in this evaluation.

The final dataset consisted of 94 acceptable LC₅₀s for 32 SMAVs and 28 GMAVs, of which 18 SMAVs and 15 GMAVs were for invertebrates. Ranked invertebrate GMAVs are listed in Table 2.

OW MDR Group ^a	Genus	Species	LC50/ EC50 (µg/L)	SMAV (µg/L)	GMAV (µg/L)	Reference
G	Amblema	plicata	1,200	1,200	1,200	Doran et al. 2001
G	Lampsilis	siliquoidea	250	250	250	Bringolf et al. 2007
G	Aplexa	hypnorum	806	806	806	Phipps and Holcombe 1985a; b
D	Ceriodaphnia	dubia	0.06			Bailey et al. 1996
D	Ceriodaphnia	dubia	0.06			Bailey et al. 1996
D	Ceriodaphnia	dubia	0.053			Bailey et al. 1997
D	Ceriodaphnia	dubia	0.055			Bailey et al. 1997
D	Ceriodaphnia	dubia	0.058			Bailey et al. 1997
D	Ceriodaphnia	dubia	0.078			Bailey et al. 1997
D	Ceriodaphnia	dubia	0.058	0.0627	0.0627	Bailey et al. 1997
D	Ceriodaphnia	dubia	0.064	0.0027	0.0027	Bailey et al. 1997
D	Ceriodaphnia	dubia	0.066			Bailey et al. 1997
D	Ceriodaphnia	dubia	0.079			Bailey et al. 1997
D	Ceriodaphnia	dubia	0.08			Foster et al. 1998
D	Ceriodaphnia	dubia	0.056			Harmon et al. 2003
D	Ceriodaphnia	dubia	0.050			El-Merhib et al. 2004
D	Ceriodaphnia	dubia	0.07			Pablo et al. 2008
D	Daphnia	ambigua	0.035	0.035		Harmon et al. 2003
D	Daphnia	magna	1.0	-		Kersting and Van Wijngaarden 1992
D	Daphnia	magna	0.325			Diamantino et al. 1998
D	Daphnia	magna	0.344			Diamantino et al. 1998
D	Daphnia	magna	0.19	0.4811	0.1298	Kikuchi et al. 2000
D	Daphnia	magna	1.074	0.4011		Gaizick et al. 2001
D	Daphnia	magna	0.74			Palma et al. 2008
D	Daphnia	magna	0.10			MRID 40840902; Burgess 1988
D	Daphnia	magna	1.7			MRID 00102520; McCarthy 1977
D	Simocephalus	vetulus	0.09	0.09	0.09	Pablo et al. 2008

Table 1. Acute toxicity data of chlorpyrifos to freshwater aquatic organisms

OW MDR Group ^a	Genus	Species	LC50/ EC50 (µg/L)	SMAV (µg/L)	GMAV (µg/L)	Reference
F	Peltodytes	sp.	0.8	0.8	0.8	Federle and Collins 1976
F	Chironomus	plumosus	1.3	1.3	0 7917	Vedamanikam 2009
F	Chironomus	tentans	0.47	0.47	0.7817	Ankley and Collyard 1995
F	Classenia	sabulosa	0.57	0.57	0.57	Sanders and Cope 1968; Johnson and Finley 1980; Mayer and Ellersieck 1986
Н	Pteronarcella	badia	0.38	0.38	0.38	Sanders and Cope 1968
Н	Pteronarcys	californicus	10	10	10	Sanders and Cope 1968; Johnson and Finley 1980; Mayer and Ellersieck 1986
Е	Gammarus	fasciatus	0.32	0.32		Sanders 1972
Е	Gammarus	lacustris	0.11	0.11	0.1876	Sanders 1969; Johnson and Finley 1980; Mayer and Ellersieck 1986
Е	Hyalella	azteca	0.04			Ankley and Collyard 1995
Е	Hyalella	azteca	0.1192	0.0008	0.0008	Steevens 1999
Е	Hyalella	azteca	0.2191	0.0908	0.0908	Steevens 1999
Е	Hyalella	azteca	0.0651			Trimble and Lydy 2006
Е	Orconectes	immunis	6	6	6	Phipps and Holcombe 1985a; b
Е	Procambarus	clarkii	21	21	21	Cebrian et al. 1992
Е	Eriocheir	sinensis	22.9			Li et al. 2006
Е	Eriocheir	sinensis	24.4			Li et al. 2006
Е	Eriocheir	sinensis	75.9	63.01	63.01	Li et al. 2006
Е	Eriocheir	sinensis	78.50	05.71	05.71	Li et al. 2006
Е	Eriocheir	sinensis	142.2			Li et al. 2006
Е	Eriocheir	sinensis	143.9			Li et al. 2006
В	Pimephales	promelas	170			Jarvinen and Tanner 1982
В	Pimephales	promelas	130			Jarvinen and Tanner 1982
В	Pimephales	promelas	122.2	194.1	194.1	Jarvinen et al. 1988
В	Pimephales	promelas	150			MRID 00154732; Jarvinen and Tanner 1982
В	Pimephales	promelas	140			Jarvinen and Tanner 1982; Office of Pesticide Programs 2000

OW MDR Group ^a	Genus	Species	LC50/ EC50 (µg/L)	SMAV (µg/L)	GMAV (µg/L)	Reference
В	Pimephales	promelas	120			Jarvinen and Tanner 1982; Office of Pesticide Programs 2000
В	Pimephales	promelas	203.0			Holcombe et al. 1982; Office of Pesticide Programs 2000
В	Pimephales	promelas	542			Phipps and Holcombe 1985a; b
В	Pimephales	promelas	200			Geiger et al. 1988
В	Pimephales	promelas	506			Geiger et al. 1988
В	Gambusia	affinis	297.6	297.6	297.6	Rao et al. 2005
В	Pungitius	pungitius	4.7	4.7	4.7	Van Wijngaarden et al. 1993
В	Lepomis	macrochirus	2.4			Johnson and Finley 1980; Mayer and Ellersieck 1986
В	Lepomis	macrochirus	1.7			Mayer and Ellersieck 1986
В	Lepomis	macrochirus	1.8		2 2 9 1	Mayer and Ellersieck 1986
В	Lepomis	macrochirus	2.5	2 201		Mayer and Ellersieck 1986
В	Lepomis	macrochirus	4.2	5.281	5.281	Mayer and Ellersieck 1986
В	Lepomis	macrochirus	3			Alexander and Batchelder 1965; Office of Pesticide Programs 2000
В	Lepomis	macrochirus	5.8			Bowman 1988b; Office of Pesticide Programs 2000
В	Lepomis	macrochirus	10			Phipps and Holcombe 1985a; b
В	Oreochromis	mossambica	4.8	11.12	11 12	Moorthy et al. 1982
В	Oreochromis	mossambica	25.78	11.12	11.12	Rao 2008
В	Tilapia	zillii	240	240	240	Shereif 1989
А	Oncorhynchus	clarkii	18.4			Johnson and Finley 1980
А	Oncorhynchus	clarkii	26	12.64		Mayer and Ellersieck 1986
А	Oncorhynchus	clarkii	5.4	15.04		Mayer and Ellersieck 1986
А	Oncorhynchus	clarkii	13.4		11.66	Mayer and Ellersieck 1986
А	Oncorhynchus	mykiss	7.1			Macek et al. 1969; Johnson and Finley 1980; Mayer and Ellersieck 1986
А	Oncorhynchus	mykiss	15	9.97		Mayer and Ellersieck 1986
А	Oncorhynchus	mykiss	51			Mayer and Ellersieck 1986

OW MDR Group ^a	Genus	Species	LC50/ EC50 (µg/L)	SMAV (µg/L)	GMAV (µg/L)	Reference
А	Oncorhynchus	mykiss	1			Mayer and Ellersieck 1986
А	Oncorhynchus	mykiss	25			Bowman 1988a; Office of Pesticide Programs 2000
А	Oncorhynchus	mykiss	8.0			Holcombe et al. 1982; Office of Pesticide Programs 2000
А	Oncorhynchus	mykiss	9			Phipps and Holcombe 1985a; b
А	Salvelinus	namaycush	98			Johnson and Finley 1980; Mayer and Ellersieck 1986
А	Salvelinus	namaycush	73			Mayer and Ellersieck 1986
А	Salvelinus	namaycush	140	150.0	150.0	Mayer and Ellersieck 1986
А	Salvelinus	namaycush	205			Mayer and Ellersieck 1986
А	Salvelinus	namaycush	227			Mayer and Ellersieck 1986
А	Salvelinus	namaycush	244			Mayer and Ellersieck 1986
В	Ictalurus	punctatus	280	475.1	475.1	Johnson and Finley 1980; Mayer and Ellersieck 1986
В	Ictalurus	punctatus	806			Phipps and Holcombe 1985a; b
В	Carassius	auratus	806	806	806	Phipps and Holcombe 1985a; b
В	Morone	saxatilis	1,000	1,000	1,000	Office of Pesticide Programs 2000
С	Xenopus	laevis	560			Richards 2000; Richards and Kendall 2002
С	Xenopus	laevis	14,600	2,701	2,701	Richards 2000; Richards and Kendall 2002
С	Xenopus	laevis	2,410			El-Merhibi et al. 2004

a MDR Groups - Freshwater:

A. the family Salmonidae in the class Osteichthyes

B. a second family in the class Osteichthyes, preferably a commercially or recreationally important warmwater species (e.g., bluegill, channel catfish, etc.)

C. a third family in the phylum Chordata (may be in the class Osteichthyes or may be an amphibian, etc.)

D. a planktonic crustacean (e.g., cladoceran, copepod, etc.)

E. a benthic crustacean (e.g., ostracod, isopod, amphipod, crayfish, etc.)

F. an insect (e.g., mayfly, dragonfly, damselfly, stonefly, caddisfly, mosquito, midge, etc.)

G. a family in a phylum other than Arthropoda or Chordata (e.g., Rotifera, Annelida, Mollusca, etc.)

H. a family in any order of insect or any phylum not already represented.

OPP Acute Benchmark Values

The OPP invertebrate acute benchmark for chlorpyrifos is 0.05 μ g/L, which is ½ the lowest LC₅₀ for *Daphnia magna* reported in U.S. EPA (2000).

The OPP fish acute benchmark for chlorpyrifos is 0.9 μ g/L, which is ½ the LC₅₀ of 1.8 μ g/L for *Lepomis macrochirus* reported in U.S. EPA (2000).

OW Acute Criterion

The acute criterion, or criterion maximum concentration (CMC), for chlorpyrifos is $0.083 \ \mu g/L$ (U.S. EPA 1986). The acute criterion dataset was smaller than the 2010 ECOTOX updated dataset, and was comprised of 15 total genera, including 8 invertebrate genera.

Genus Level Invertebrate-only HC05

The genus-level invertebrate acute HC_{05} was calculated following the U.S. EPA (1985) methodology for the 15 invertebrate genera (Table 2) in the combined chlorpyrifos dataset was 0.0580 µg/L (Table 3).

Genus	Species	SMAV	GMAV	GMAV Rank
Amblema	plicata	1,200	1,200	15
Aplexa	hypnorum	806.0	806.0	14
Eriocheir	sinensis	63.91	63.91	13
Procambarus	clarkii	21.00	21.00	12
Pteronarcys	californicus	10.00	10.00	11
Orconectes	immunis	6.000	6.000	10
Peltodytes	sp.	0.8000	0.8000	9
Chironomus	plumosus	1.300	0.7017	0
Chironomus	tentans	0.4700	0.7817	8
Classenia	sabulosa	0.5700	0.5700	7
Pteronarcella	badia	0.3800	0.3800	6
Gammarus	fasciatus	0.3200	0.1976	5
Gammarus	lacustris	0.1100	0.1870	5
Daphnia	ambigua	0.0350	0.1209	1
Daphnia	magna	0.4811	0.1298	4
Hyalella	azteca	0.0908	0.0908	3
Simocephalus	vetulus	0.0900	0.0900	2
Ceriodaphnia	dubia	0.0627	0.0627	1

Table 2. Chlorpyrifos invertebrate SMAVs and GMAVs (µg/L).

N	Rank	GMAV	ln(GMAV)	ln(GMAV) ²	P=R/(N+1)	sqrt(P)
15	4	0.1298	-2.042	4.169	0.2500	0.5000
	3	0.0908	-2.399	5.756	0.1875	0.4330
	2	0.09	-2.408	5.798	0.1250	0.3536
	1	0.0627	-2.769	7.670	0.0625	0.2500
	Sum:		-9.618	23.39	0.6250	1.537
	$S^2 =$	7.621				
	L =	-3.465				
	A =	-2.848				
	HC ₀₅ =	0.0580				

Table 3. Genus level invertebrate-only acute HC₀₅ for chlorpyrifos calculated following the U.S. EPA (1985) methodology.

Table 4. Summary and comparison of acute values for chlorpyrifos.

Magnitude relative to ALB is the OPP ALB/OW value, the ratio for the OPP value/OW value for each value comparison. A ratio <1 indicates the OPP value is lower than the OW value and a ratio >1 indicates the OPP value is higher than the OW value.

Pesticide	OPP Invertebrate ALB (lowest LC50/2) (Year published, species)	OW ALC (FAV/2) (Year published, # of genera, magnitude relative to ALB)	OW Genus level Invertebrate-only HC05/2 (# of genera, magnitude relative to ALB)
Chlorpyrifos	0.05 μg/L	0.083 μg/L	0.029 μg/L
	(2000; <i>D. magna</i>)	(1986 15 genera, 0.60X)	(15 genera, 1.7X)

Figure 1 shows a genus level sensitivity distribution for the full chlorpyrifos dataset. Major taxonomic groups are delineated by different symbols, and invertebrate genera are identified by name. The CMC, OPP acute benchmark values, and genus-level invertebrate only acute $HC_{05}/2$ are included.

Figure 1. Chlorpyrifos acute genus-level SD.

Symbols represent Genus Mean Acute Values (GMAVs) calculated using all available data from the chlorpyrifos ALC (U.S. EPA 1986), the Office of Pesticide Program's registration review document for chlorpyrifos (U.S. EPA 2000), and an ECOTOX search conducted by Office of Water in 2010.

1.1.6.2 Chlorpyrifos References

MRID 00102520: McCarty, W.M. 1977. Toxicity of chlorpyrifos to daphnids. Rep. ES-164. The Dow Chemical Company. Midland, MI.

MRID 00154732: Jarvinen, A.W., and D.K. Tanner. 1982. Toxicity of Selected Controlled Release and Corresponding Unformulated Technical Grade Pesticides to the Fathead Minnow Pimephales promelas. Environ. Pollut. A. 27(3): 179-195. doi:10.1016/0143-1471(82)90024-1.

MRID 40840902: Burgess, D. 1988. Acute flow-through toxicity of chlorpyrifos technical to *Daphnia magna*. Report No. 37190. Prepared by Analytical Bio-Chemistry Laboratories, Inc. Columbia, MO. Submitted by Makhteshim-Agan (America) Inc. New York, NY. Accession No. 408409-02.

Alexander, H.C.; Batchelder, T.L. 1965. Results of a Study on the Acute Toxicity of Dursban® to Three Species of Fish. (Unpublished study received Jan 11, 1966 under 464-343; submitted by Dow Chemical U.S.A., Midland, Mich.; CDL:003570-L).

Ankley, G.T., and S.A. Collyard. 1995. Influence of Piperonyl Butoxide on the Toxicity of Organophosphate Insecticides to Three Species of Freshwater Benthic Invertebrates. Comp. Biochem. Physiol. C Comp. Pharmacol. Toxicol. 110(2): 149-155.

Bailey, H.C., C. DiGiorgio, K. Kroll, J.L. Miller, D.E. Hinton, and G. Starrett. 1996. Development of Procedures for Identifying Pesticide Toxicity in Ambient Waters: Carbofuran, Diazinon, Chlorpyrifos. Environ. Toxicol. Chem. 15(6): 837-845. doi:10.1002/etc.5620150604.

Bailey, H.C., J.L. Miller, M.J. Miller, L.C. Wiborg, L. Deanovic and T. Shed. 1997. Joint acute toxicity of diazinon and chlorpyrifes to Ceriodaphnia dubia. Environ. Toxicol. Chem. 16:2304-2308.

Bowman, J. 1988a. Acute Flow-Through Toxicity of Chlorpyrifos Technical to Bluegill (Lepomis macrochirus): Project ID:37189. Unpublished study prepared by Analytical Bio-Chemistry Laboratories, Inc. 188 p.

Bringolf, R.B., W.G. Cope, M.C. Barnhart, S. Mosher, P.R. Lazaro, and D. Shea. 2007. Acute and Chronic Toxicity of Pesticide Formulations (Atrazine, Chlorpyrifos, and Permethrin) to Glochidia and Juveniles of Lampsilis siliquoidea. Environ. Toxicol. Chem. 26(10): 2101-2107. doi:10.1897/06-555R.1.

Cebrian, C., E.S. Andreu-Moliner, A. Fernandez-Casalderrey, and M.D. Ferrando. 1992. Acute Toxicity and Oxygen Consumption in the Gills of Procambarus clarkii in Relation to Chlorpyrifos Exposure. Bull. Environ. Contam. Toxicol. 49(1): 145-149. doi:10.1007/BF00193353.

Diamantino, T.C., R. Ribeiro, F. Goncalves, and A.M.V.M. Soares. 1998. METIER (Modular Ecotoxicity Tests Incorporating Ecological Relevance) for Difficult Substances. 5. Chlorpyrifos Toxicity to Daphnia magna in Static, Semi-Static, and Flow-Through Conditions. Bull. Environ. Contam. Toxicol. 61(4): 433-439. doi:10.1007/s001289900781.

Doran, W.J., W.G. Cope, R.G. Rada, and M.B. Sandheinrich. 2001. Acetylcholinesterase Inhibition in the Threeridge Mussel (Amblema plicata) by Chlorpyrifos: Implications for Biomonitoring. Ecotoxicol. Environ. Saf. 49(1): 91-98. doi:10.1006/eesa.2000.2036. El-Merhibi, A., A. Kumar, and T. Smeaton. 2004. Role of Piperonyl Butoxide in the Toxicity of Chlorpyrifos to Ceriodaphnia dubia and Xenopus laevis. Ecotoxicol. Environ. Saf. 57(2): 202-212. doi:10.1016/S0147-6513(03)00082-4.

Federle, P.F., and W.J. Collins. 1976. Insecticide Toxicity to Three Insects from Ohio Ponds. Ohio J. Sci. 76(1): 19-24.

Foster, S., M. Thomas, and W. Korth. 1998. Laboratory-Derived Acute Toxicity of Selected Pesticides to Ceriodaphnia dubia. Australas. J. Ecotoxicol. 4(1): 53-59.

Gaizick, L., G. Gupta, and E. Bass 2001. Toxicity of Chlorypyrifos to Rana pipiens Embryos. Bull. Environ. Contam. Toxicol. 66(3): 386-391. doi:10.1007/s00128-001-0017-y.

Geiger, D.L., D.J. Call, and L.T. Brooke. 1988. Acute Toxicities of Organic Chemicals to Fathead Minnows (Pimephales promelas) Volume IV. Center for Lake Superior Environmental Studies, University of Wisconsin, Superior, WI, 4, 355 p.

Harmon, S.M., W.L. Specht, and G.T. Chandler 2003. A Comparison of the Daphnids Ceriodaphnia dubia and Daphnia ambigua for Their Utilization in Routine Toxicity Testing in the Southeastern United States. Arch. Environ. Contam. Toxicol. 45(1): 79-85. doi:10.1007/s00244-002-0116-8.

Holcombe, G.W., G.L. Phipps and O.K. Tanner. 1982. The acute toxicity of kelthane, Oursban, disulfoton, pydrin, and permethrin to fathead minnows Pimephales promelas and rainbow trout Salmo gairdneri. Environ. Pollut. (Ser. A.) 29:167-178.

Johnson, W.W. and M.T. Finley. 1980. Handbook of acute toxicity of chemicals to fish and aquatic invertebrates. Resource Publication 137.U.S. Fish and Wildlife Service, Washington, DC. p. 21.

K. Li, L. Q. Chen, E. C. Li and Z. K. Zhou. 2006. Acute Toxicity of the Pesticides Chlorpyrifos and Atrazine to the Chinese Mitten-handed Crab, Eriocheir sinensis. Bull. Environ. Contam. Toxicol. 77:918-924.

Kersting, K., and R. Van Wijngaarden (1992). Effects of Chlorpyrifos on a Microecosystem. Environ. Toxicol. Chem. 11 (3): 365-372. doi:10.1002/etc.5620110310.

Kikuchi, M., Y. Sasaki, and M. Wakabayashi. 2000. Screening of Organophosphate Insecticide Pollution in Water by Using Daphnia magna. Ecotoxicol. Environ. Saf., 47, (3), 239-245. doi:10.1006/eesa.2000.1958.

Macek, K.J., C. Hutchinson and O.B. Cope. 1969. The effects of temperature on the susceptibility of bluegills and rainbow trout to selected pesticides. Bull. Environ. Contam. Toxicol. 4:174-183.

Mayer, F.L., Jr., and M.R. Ellersieck. 1986. Manual of Acute Toxicity: Interpretation and Data Base for 410 Chemicals and 66 Species of Freshwater Animals. USDI Fish and Wildlife Service, Publication No.160, Washington, DC, 505 p.

Moorthy, M.V., S. Chandrasekhar and V.R. Chandran. 1982. A note on acute toxicity of chlorpyrifos to the freshwater fish Thilapia mossambica. Pesticides 16:32.

Pablo, F., F.R. Krassoi, P.R.F. Jones, A.E. Colville, G.C. Hose, and R.P. Lim. 2008. Comparison of the Fate and Toxicity of Chlorpyrifos - Laboratory Versus a Coastal Mesocosm System. Ecotoxicol. Environ. Saf. 71(1): 219-229.

Palma, P., V.L. Palma, R.M. Fernandes, A.M.V.M. Soares, and I.R. Barbosa. 2008. Acute Toxicity of Atrazine, Endosulfan Sulphate and Chlorpyrifos to Vibrio fischeri, Thamnocephalus platyurus and Daphnia magna, Relative to Their Concentrations in Surface Waters from the Alentejo Region of Portugal. Bull. Environ. Contam. Toxicol. 81(5): 485-489. doi:10.1007/s00128-008-9517-3.

Phipps, G.L. and G.W. Holcombe. 1985a. A method for aquatic multiple species toxicant testing. Acute toxicity of 10 chemicals to 5 vertebrates and 2 invertebrates. Environ. Pollut. (Series A) 38:141-157.

Phipps, G.L. and G.W. Holcombe. 1985b. U.S. EPA, Duluth, MM. (Memorandum to C.E. Stephan, U.S. EPA, Duluth, MH. October 22.

Rao, J.V. 2008. Brain Acetylcholinesterase Activity as a Potential Biomarker for the Rapid Assessment of Chlorpyrifos Toxicity in a Euryhaline Fish, Oreochromis mossambicus. Environ. Bioindic. 3(1): 11-22.

Richards, S.M. 2000. Chlorpyrifos: Exposure and Effects in Passerines and Anurans. Ph.D Thesis, Texas Tech University, Lubbock, TX, 147 p.

Richards, S.M., and R.J. Kendall. 2002. Biochemical Effects of Chlorpyrifos on Two Developmental Stages of Xenopus laevis. Environ. Toxicol. Chem. 21(9): 1826-1835.

Sanders, H.O. 1969. Toxicity of Pesticides to the Crustacean Gammarus lacustris. Tech.Pap.No.25, U.S.D.I., Bur. Sports Fish. Wildl., Fish Wildl. Serv., Washington, DC, 18 p.

Sanders, H.O. 1972. Toxicity of some insecticides to four species of malacostracan crustaceans. Technical Paper No. 66. U.S. Fish and Wildlife Service, Washington, DC.

Sanders, H.O. and O.B. Cope. 1968. The relative toxicities of several pesticides to naiads of three species of stoneflies. Limnol. Oceanogr. 13:112-117

Shereif, M.M. 1989. Acute and Chronic Effects of Chlorpyrifos on Tilapia zillii. Ph.D. Thesis, Michigan State University, East Lansing, MI, 114 p.

Steevens, J.A. 1999. Chemical Mixture Interactions: Toxicity of Chlorpyrifos, Dieldrin, and Methyl Mercury to the Amphipod Hyalella azteca. Ph.D Thesis, University of Mississippi, University, MS, 183 p.

Trimble, A.J., and M.J. Lydy (2006). Effects of Triazine Herbicides on Organophosphate Insecticide Toxicity in Hyalella azteca. Arch. Environ. Contam. Toxicol. 51(1): 29-34. doi:10.1007/s00244-005-0176-7.

U.S. EPA. 1985. Guidelines for derving numerical national water critera for the protection of aquatic organisms and their uses. United States Environmental Protection Agency. Stephan, C.E., D.I. Mount, D.J. Hansen, J.H. Gentile, G.A. Chapman and W.A. Brungs. PB85-227049. National Technical Information Service, Springfield, VA. U.S.

U.S. EPA. 1986. Ambient water quality criteria for chlorpyrifos – 1986. Office of Water Regulations And Standards Criteria and Standards Division. Washington, DC. EPA 440/5-86-005. September 1986.

U.S. EPA 2000. Reregistration eligibility science chapter for chlorpyrifos. Fate and environmental risk assessment chapter. June 2000.

U.S. EPA. 2001. Office of Pesticide Programs Annual Report 2000. Office of Chemical Safety and Pollution Prevention formerly the Office of Prevention, Pesticides and Toxic Sustances, Washington DC. EPA 735-R-00-002. August 2001.

U.S. EPA. 2024. Draft Comparison of Aquatic Life Protective Values Developed for Pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Clean Water Act (CWA). EPA-820-D-24-002.

Van Wijngaarden, R., P. Leeuwangh, W.G.H. Lucassen, K. Romijn, R. Ronday, and R. Van der Velde. 1993. Acute Toxicity of Chlorpyrifos to Fish, a Newt, and Aquatic Invertebrates. Bull. Environ. Contam. Toxicol. 51(5): 716-723.

Vedamanikam, V.J. 2009. Formation of Resistance in the Chironomus plumosus to Four Pesticides over 45 Generations. Toxicol. Environ. Chem. 91(1): 187-194.

1.1.7 Comparison of Aquatic Life Toxicity Values for Dichlorvos: Data Sources and Considerations

Data used in the *Draft Comparison of Aquatic Life Protective Values Developed for Pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Clean Water Act (CWA)* (U.S. EPA 2024) for dichlorvos were gathered from the OPP registration review document for dichlorvos (U.S. EPA 2009) and an EPA ECOTOX Knowledgebase search conducted in 2013. There was no comparative analysis for dichlorvos chronic data.

1.1.7.1 Dichlorvos Acute Toxicity Data

Acute data were gathered from the Office of Pesticide Programs (OPP) registration review document for dichlorvos (U.S. EPA 2009) and an ECOTOX search conducted in 2013 (see Table 1).

The dichlorvos acute dataset consisted of 27 acceptable acute effect LC_{50} s for 15 total species across 12 genera, of which eight were vertebrate species across six invertebrate genera. Ranked invertebrate GMAVs are listed in Table 4.

OW MDR Group ^a	Genus	Species	LC50/ EC50 (µg/L)	SMAV (µg/L)	GMAV (µg/L)	Reference
G	Lumbriculus	variegatus	2,180	2,180	2,180	Brooke 1991
G	Physa	sp.	170	170	170	Brooke 1991
D	Daphnia	magna	0.266	0.266	0 1222	Brooke 1991
D	Daphnia	pulex	0.0668	0.0668	0.1555	Mayer and Ellersieck 1986
D	Simocephalus	serrulatus	0.28	0.2608	0.2608	Mayer and Ellersieck 1986
D	Simocephalus	serrulatus	0.26	0.2098	0.2098	Mayer and Ellersieck 1986
F	Pteronarcys	californica	0.1	0.1	0.1	Mayer and Ellersieck 1986
Е	Gammarus	fasciatus	0.4	0.4	0 4 4 7 2	Sanders 1972
Е	Gammarus	lacustris	0.5	0.5	0.4472	Mayer and Ellersieck 1986
В	Pimephales	promelas	4,000			Pickering and Henderson 1966
В	Pimephales	promelas	11,600	5,234	5,234	Mayer and Ellersieck 1986
В	Pimephales	promelas	3,090			Brooke 1991
В	Gambusia	affinis	5,270	5,270	5,270	Mayer and Ellersieck 1986
В	Lepomis	macrochirus	869			Mayer and Ellersieck 1986
В	Lepomis	macrochirus	480	115 C	1156	Cope 1965
В	Lepomis	macrochirus	350	445.0	445.0	Pickering and Henderson 1966
В	Lepomis	macrochirus	270			Pickering and Henderson 1966
В	Tilapia	mossambica	1,934			Rath and Misra 1979
В	Tilapia	mossambica	1,710	1,671	1,671	Rath and Misra 1979
В	Tilapia	mossambica	1,410			Rath and Misra 1979
А	Oncorhynchus	clarki	170	199.8	141.4	Mayer and Ellersieck 1986

Table 1. Acute toxicity data of dichlorvos to freshwater aquatic organisms.

OW MDR Group ^a	Genus	Species	LC50/ EC50 (µg/L)	SMAV (µg/L)	GMAV (µg/L)	Reference
А	Oncorhynchus	clarki	170			Mayer and Ellersieck 1986
А	Oncorhynchus	clarki	170			Mayer and Ellersieck 1986
А	Oncorhynchus	clarki	213			Mayer and Ellersieck 1986
А	Oncorhynchus	clarki	304			Mayer and Ellersieck 1986
А	Oncorhynchus	mykiss	100	100		Stalin and Johnson 1977
А	Salvelinus	namaycush	187	195 0	195.0	Mayer and Ellersieck 1986
А	Salvelinus	namaycush	183	185.0	165.0	Mayer and Ellersieck 1986

a MDR Groups – Freshwater:

A. the family Salmonidae in the class Osteichthyes

- B. a second family in the class Osteichthyes, preferably a commercially or recreationally important warmwater species (e.g., bluegill, channel catfish, etc.)
- C. a third family in the phylum Chordata (may be in the class Osteichthyes or may be an amphibian, etc.)
- D. a planktonic crustacean (e.g., cladoceran, copepod, etc.)
- E. a benthic crustacean (e.g., ostracod, isopod, amphipod, crayfish, etc.)
- F. an insect (e.g., mayfly, dragonfly, damselfly, stonefly, caddisfly, mosquito, midge, etc.)
- G. a family in a phylum other than Arthropoda or Chordata (e.g., Rotifera, Annelida, Mollusca, etc.)
- H. a family in any order of insect or any phylum not already represented.

OPP Acute Benchmark Values

The OPP invertebrate acute benchmark is 0.0334 μ g/L, which is ½ of the *D. pulex* LC₅₀ of 0.0668 μ g/L reported in Mayer and Ellersieck (1986).

The OPP fish acute benchmark is 50 μ g/L, which is ½ of the *O. mykiss* LC₅₀ of 100 μ g/L reported in Stalin and Johnson (1977).

OW Acute Criterion

There is no acute criterion, or criterion maximum concentration (CMC), for dichlorvos. An illustrative example was calculated for this analysis, using all available data (Table 2). The illustrative FAV calculated calculated following the U.S. EPA (1985) methodology for the 12 genera in the dichlorvos dataset was $0.06330 \mu g/L$ (Table 3).

Table 2. Dichlorvos	Ranked Species Mean	Acute Values (SM	MAV) and Genus M	Mean Acute
Values (GMAV).				

Genus	Species	SMAV (µg/L)	GMAV (µg/L)	GMAV Rank
Gambusia	affinis	5,270	5,270	12
Pimephales	promelas	5,234	5,234	11
Lumbriculus	variegatus	2,180	2,180	10
Tilapia	mossambica	1,671	1,671	9
Lepomis	macrochirus	445.6	445.6	8
Salvelinus	namaycush	185.0	185.0	7
Physa	sp.	170.0	170.0	6
Oncorhynchus	clarki	199.8	141.2	5
Oncorhynchus	mykiss	100	141.5	5

Genus	Species	SMAV (µg/L)	GMAV (µg/L)	GMAV Rank
Gammarus	fasciatus	0.4000	0 4 4 7 2	4
Gammarus	lacustris	0.5000	0.4472	4
Simocephalus	serrulatus	0.2698	0.2698	3
Daphnia	magna	0.2660	0 1222	2
Daphnia	pulex	0.0700	0.1555	2
Pteronarcys	californica	0.1000	0.1000	1

Table 3. Dichlorvos Illustrative FAV/2.

N	Rank	GMAV	ln(GMAV)	ln(GMAV) ²	P=R/(N+1)	sqrt(P)
12	4	0.4472	-0.805	0.648	0.3077	0.5547
	3	0.2698	-1.310	1.716	0.2308	0.4804
	2	0.1333	-2.015	4.061	0.1538	0.3922
	1	0.1000	-2.303	5.302	0.0769	0.2774
	Sum:		-6.433	11.73	0.769	1.705
	$S^2 =$	32.326				
	L =	-4.031				
	A =	-2.760				
	$\mathbf{FAV} =$	0.06330				
	FAV/2	0.032				

Genus Level Invertebrate-only HC₀₅

The genus level invertebrate-only acute HC_{05} calculated following the U.S. EPA (1985) methodology for the six invertebrate genera (Table 4) in the dichlorvos dataset was 0.04513 µg/L (Table 5).

uble 4. Diemoi vos miver tebrute bitili vis una Gitili vis (µg/L).								
Genus	Species	SMAV	GMAV	GMAV Rank				
Lumbriculus	variegatus	2,180	2,180	б				
Physa	sp.	170.0	170.0	5				
Gammarus	fasciatus	0.4000	0 4472	4				
Gammarus	lacustris	0.5000	0.4472	4				
Simocephalus	serrulatus	0.2698	0.2698	3				
Daphnia	magna	0.2660	0 1265	2				
Daphnia	pulex	0.0668	0.1505	2				
Pteronarcvs	californica	0.1000	0.1000	1				

Table 4. Dichlorvos invertebrate SMAVs and GMAVs (µg/L).

N	Rank	GMAV	ln(GMAV)	ln(GMAV) ²	P=R/(N+1)	sqrt(P)
6	4	0.4472	-0.805	0.648	0.5714	0.7559
	3	0.2698	-1.310	1.716	0.4286	0.6547
	2	0.1333	-2.015	4.061	0.2857	0.5345
	1	0.1000	-2.303	5.302	0.1429	0.3780
	Sum:		-6.433	11.73	1.429	2.323
	$S^2 =$	17.406				
	L =	-4.031				
	A =	-3.098				
	HC ₀₅ =	0.04513				

Table 5. Genus-level invertebrate acute HC₀₅ for dichlorvos calculated using following the U.S. EPA (1985) methodology.

Table 6. Summary and comparison of acute values for dichlorvos.

Magnitude relative to ALB is the OPP ALB/OW value, the ratio for the OPP value/OW value for each value comparison. A ratio >1 indicates the OPP value is higher than the OW value.

Pesticide	OPP Invertebrate ALB (lowest LC50/2) (Year published, species)	OW Illustrative ALC (FAV/2) (Year published, # of genera, magnitude relative to ALB)	OW Genus-level Invertebrate-only HC ₀₅ /2 (# of genera, magnitude relative to ALB)
Dichlorvos	0.0334 μg/L (2021; D. pulex)	0.032 μg/L (illustrative example calculated for this analysis, 12 genera, 1.1X)	0.023 μg/L (6 genera, 1.5X)

Figure 1 shows a genus level sensitivity distribution for the dichlorvos dataset. Major taxonomic groups are delineated by different symbols, and invertebrate genera are identified by name. Lines denoting the OPP acute benchmark values, illustrative ALC example, and invertebrate-only acute $HC_{05}/2$ are included.

Figure 1. Dichlorvos genus-level acute SD.

Symbols represent Genus Mean Acute Values (GMAVs) calculated using all available data from the Office of Pesticide Program's registration review document for dichlorvos (U.S. EPA 2009) and an ECOTOX search conducted by Office of Water in 2013. Dichlorvos does not have a recommended 304(a) aquatic life criteria. The "Criterion Maximum Concentration" is an illustrative example calculated for these analyses.

1.1.7.2 Dichlorvos References

Brooke, L.T. 1991. Results of Freshwater Exposures with the Chemicals Atrazine, Biphenyl, Butachlor, Carbaryl, Carbazole, Dibenzofuran, 3,3'-Dichlorobenzidine, Dichlorvos, 1,2-Epoxyethylbenzene (Styrene Oxide), Isophorone, Isopropalin, Ox. Center for Lake Superior Environmental Studies, University of Wisconsin, Superior, WI, 110 p. ECOREF#: 17138.

Cope, O.B. 1965. Sport Fishery Investigations. Fish and Wildlife Service Circular 226, Effects of Pesticides on Fish and Wildlife. Washington, DC, 51-63. ECOREF#: 2871.

Mayer, F.L., Jr., and M.R. Ellersieck. 1986. Manual of Acute Toxicity: Interpretation and Data Base for 410 Chemicals and 66 Species of Freshwater Animals. USDI Fish and Wildlife Service, Publication No.160, Washington, DC, 505 p. ECOREF#: 6797.

Pickering, Q.H., and C. Henderson. 1966. The Acute Toxicity of Some Pesticides to Fish. Ohio J. Sci., 66, (5), 508-513. ECOREF#: 8096.

Rath, S., and B.N. Misra. 1979. Relative Toxicity of Dichlorvos (DDVP) to Tilapia mossambica, Peters of 3 Different Age Groups. Exp. Gerontol., 14, 307-309. doi:10.1016/0531-5565(79)90042-1. ECOREF#: 17133.

Sanders, H.O. 1972. Toxicity of Some Insecticides to Four Species of Malacostracan Crustaceans. Tech. Pap. Bur. Sport Fish. Wildl., 66, 19 p. ECOREF#: 887.

Stalin, A.M. and W.W. Johnson. 1977. Static Toxicity Tests, Fish Toxicity. Pesticide Research Laboratory, Columbia, MO (undated) (III-39 – III-44).

U.S. EPA. 1985. Guidelines for derving numerical national water critera for the protection of aquatic organisms and their uses. United States Environmental Protection Agency. Stephan, C.E., D.I. Mount, D.J. Hansen, J.H. Gentile, G.A. Chapman and W.A. Brungs. PB85-227049. National Technical Information Service, Springfield, VA. U.S.

U.S. EPA. 2009. Registration review. Ecological risk assessment problem formulation for: dichlorvos (DDVP). Office of Pesticide Programs. May 14, 2009.

U.S. EPA. 2024. Draft Comparison of Aquatic Life Protective Values Developed for Pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Clean Water Act (CWA). EPA-820-D-24-002.

1.1.8 Comparison of Aquatic Life Toxicity Values for Acrolein: Data Sources and Considerations

Data used in the *Draft Comparison of Aquatic Life Protective Values Developed for Pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Clean Water Act (CWA)* (U.S. EPA 2024) for acrolein were obtained from Table 1 of the acrolein freshwater aquatic life criteria (ALC) document (U.S. EPA 2009a). There was no comparative analysis for chronic acrolein values.

1.1.8.1 Acrolein Acute Toxicity Data

Acceptable acute data for acrolein were obtained from Table 1 of the acrolein freshwater aquatic life criteria (ALC) document (U.S. EPA 2009a). Data were available for 36 acute tests encompassing 15 species and 14 genera. Data for invertebrate taxa were available for 12 acute tests encompassing seven species and seven genera. The OPP benchmark document (2009b) was examined to determine whether any additional acute tests were available that were not included in the criteria document. All values in the OPP benchmark document were included in Table 1 of the acrolein ALC. Ranked invertebrate GMAVs are listed in Table 2.

OW MDR Group ^a	Genus	Species	LC50/ EC50 (µg/L)	SMAV (µg/L)	GMAV (µg/L)	Reference
G	Aplexa	hypnorum	>151	>151	>151	Holcomb et al. 1987
G	Physa	heterostropha	368	368	368	Horne and Oblad 1983
D	Daphnia	magna	57			Macek et al. 1976
D	Daphnia	magna	80			USEPA 1978
D	Daphnia	magna	93	61 70	61 70	Randall and Knopp 1980
D	Daphnia	magna	83	01.79	01.79	LeBlanc 1980
D	Daphnia	magna	51			Holcomb et al. 1987
D	Daphnia	magna	<31			Blakemore 1990
Е	Gammarus	minus	180	180	180	Horne and Oblad 1983
Н	Peltoperla	maria	5,920	5,920	5,920	Horne and Oblad 1983
F	Chironomus	riparius	510	510	510	Horne and Oblad 1983
F	Tanytarsus	dissimilis	>151	>151	>151	Holcomb et al. 1987
А	Oncorhynchus	kisutch	68	68		Lorz et al. 1979
А	Oncorhynchus	mykiss	74			Birge et al. 1982
А	Oncorhynchus	mykiss	180		57.05	Horne and Oblad 1983
А	Oncorhynchus	mykiss	38	47.86	57.05	Venturino et al. 2007
А	Oncorhynchus	mykiss	<31			Bowman 1990a
А	Oncorhynchus	mykiss	16			Holcomb et al. 1987
В	Pimephales	promelas	320			Union Carbide Corp. 1974
В	Pimephales	promelas	45			Birge et al. 1982
В	Pimephales	promelas	14	35.79	35.79	Geiger et al. 1986
В	Pimephales	promelas	19.5			Geiger et al. 1986
В	Pimephales	promelas	61			Birge et al. 1982

Table 1. Acute toxicity data of acrolein to freshwater aquatic organisms.

OW MDR Group ^a	Genus	Species	LC50/ EC50 (µg/L)	SMAV (µg/L)	GMAV (µg/L)	Reference
В	Pimephales	promelas	29.7			Sabourin 1986
В	Pimephales	promelas	27			Spehar 1989
В	Pimephales	promelas	14			Holcom et al. 1987
В	Catostomus	commersoni	14	14	14	Holcomb et al. 1987
В	Jordanella	floridae	60	55 22	55 22	Spehar 1989
В	Jordanella	floridae	51	55.52	55.52	Spehar 1989
В	Lepomis	macrochirus	100			Louder and McCoy 1962
В	Lepomis	macrochirus	90			USEPA 1978
В	Lepomis	macrochirus	90	56.94	56.94	Buccafusco et al. 1981
В	Lepomis	macrochirus	33			Holcomb et al. 1987
В	Lepomis	macrochirus	22.4			Bowman 1990b
В	Micropterus	salmoides	160	160	160	Louder and McCoy 1962
С	Xenopus	laevis	7	7	7	Holcomb et al. 1987

a MDR Groups - Freshwater:

A. the family Salmonidae in the class Osteichthyes

B. a second family in the class Osteichthyes, preferably a commercially or recreationally important warmwater species (e.g., bluegill, channel catfish, etc.)

C. a third family in the phylum Chordata (may be in the class Osteichthyes or may be an amphibian, etc.)

D. a planktonic crustacean (e.g., cladoceran, copepod, etc.)

E. a benthic crustacean (e.g., ostracod, isopod, amphipod, crayfish, etc.)

F. an insect (e.g., mayfly, dragonfly, damselfly, stonefly, caddisfly, mosquito, midge, etc.)

G. a family in a phylum other than Arthropoda or Chordata (e.g., Rotifera, Annelida, Mollusca, etc.)

H. a family in any order of insect or any phylum not already represented.

OPP Acute Benchmark Values

The OPP invertebrate acute benchmark for acrolein is $<15.5 \ \mu g/L$, which is $\frac{1}{2}$ the lowest LC₅₀ for *Daphnia magna*. This is also the lowest LC₅₀ for *D. magna* reported in Table 1 of the ALC document.

The OPP vertebrate acute benchmark for acrolein is 3.5 μ g/L, which is $\frac{1}{2}$ the lowest LC₅₀ for the African clawed frog, *Xenopus laevis*.

OW Acute Criterion

The criterion maximum concentration (CMC) for acrolein is $3.0 \,\mu g/L$.

Genus Level Invertebrate-only HC₀₅

The genus level invertebrate-only acute HC_{05} calculated following the U.S. EPA (1985) methodology for the seven invertebrate genera (Table 2) in the acrolein dataset was 45.74 µg/L (Table 3).

Table 2. Acrolein Invertebrate SMAVs and GMAVs (µg/L).

Genus	Species	SMAV	GMAV	GMAV Rank
Tallaperla ^a	maria	5,920	5,920	7

Genus	Species	SMAV	GMAV	GMAV Rank
Chironomus	riparius	510.0	510.0	6
Physa	heterostropha	368.0	368.0	5
Gammarus	minus	180.0	180.0	4
Aplexa	hypnorum	151.0	151.0	3
Tanytarsus	dissimilis	151.0	151.0	2
Daphnia	magna	61.79	61.79	1

a – Genus changed from *Peltoperla*

Table 3. Genus level invertebrate-o	only acute HC05 for acrolein	calculated following the U.S.
EPA (1985) methodology.	-	_

N	Rank	GMAV	ln(GMAV)	ln(GMAV) ²	P=R/(N+1)	sqrt(P)
7	4	180	5.193	26.97	0.5000	0.7071
	3	151	5.017	25.17	0.3750	0.6124
	2	151	5.017	25.17	0.2500	0.5000
	1	61.79	4.124	17.01	0.1250	0.3536
	Sum:		19.35	94.3	1.250	2.173
	$S^2 =$	10.08				
	L =	3.113				
	A =	3.823				
	HC ₀₅ =	45.74				

Table 4. Summary and comparison of acute values for acrolein.

Magnitude relative to ALB is the OPP ALB/OW value, the ratio for the OPP value/OW value for each value comparison. A ratio <1 indicates the OPP value is lower than the OW value and a ratio >1 indicates the OPP value is higher than the OW value.

Pesticide	OPP Most Sensitive ALB (lowest LC50/2) (Year published, species)	OW ALC (FAV/2) (Year published, # of genera, magnitude relative to ALB)	OW Genus-level Invertebrate- only HC ₀₅ /2 (# of genera, magnitude relative to ALB)
Acrolein (contact herbicide)	3.5 μg/L (2023; Xenopus laevis)	3.0 μg/L (2009, 14 genera, 1.2X)	22.87 μg/L (7 genera, 0.68X) Note the magnitude comparison is with the invertebrate ALB of <15.5 μg/L.

Figure 1 shows a genus-level sensitivity distribution for the full acrolein dataset. Major taxonomic groups are delineated by different symbols, and invertebrate genera are identified by name. The CMC, OPP invertebrate and vertebrate acute benchmark values, and invertebrate-only acute $HC_{05}/2$ are included.

Figure 1. Acrolein genus-level acute SD. Symbols represent GMAVs calculated using all available data from Table 1 of the 2009 acrolein ALC.

1.1.8.2 Acrolein References

U.S. EPA. 1985. Guidelines for derving numerical national water critera for the protection of aquatic organisms and their uses. United States Environmental Protection Agency. Stephan, C.E., D.I. Mount, D.J. Hansen, J.H. Gentile, G.A. Chapman and W.A. Brungs. PB85-227049. National Technical Information Service, Springfield, VA. U.S.

U.S. EPA. 2009a. Ambient aquatic life water quality criteria for acrolein. Office of Water. Washington D.C. EPA 822R0819. July 1, 2009.

U.S. EPA. 2009b. Environmental fate and ecological risk assessment for the reregistration of acrolein. Office of Pesticide Programs. Washington, D.C. 20460.

U.S. EPA. 2024. Draft Comparison of Aquatic Life Protective Values Developed for Pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Clean Water Act (CWA). EPA-820-D-24-002.
1.2 DATA-LIMITED PESTICIDES

1.2.1 Comparison of Aquatic Life Toxicity Values for Oxamyl: Data Sources and Considerations

Data used in the *Draft Comparison of Aquatic Life Protective Values Developed for Pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Clean Water Act (CWA)* (U.S. EPA 2024) are described below. Toxicity data for oxamyl were gathered by OW in 2015 and combined with data from OPP's registration review document for oxamyl (U.S. EPA 2009).

1.2.1.1 Oxamyl Acute Toxicity Data

The oxamyl acute data include nine LC_{50} s representing six species in six genera that were classified as "quantitative" data, and two 96-hour LC_{50} s for the amphipod species *Gammarus italicus* and *Echinogammarus tibaldii* (classified as qualitative, but included in this analysis to increase the number of invertebrate genera to four), thereby enabling calculation of an invertebrate only genus-level HC₀₅. Tests were classified as qualitative because both the *G. italicus and E. tibaldi* studies were conducted with field-collected organisms, and the *G. italicus* study was not replicated.

The final acute oxamyl dataset consisted of 11 LC_{50} s for eight species across eight genera, of which four were invertebrate species and four were invertebrate genera. Acute data for oxamyl are shown in Table 1. Ranked invertebrate GMAVs are listed in Table 2.

OW MDR Group ^a	Genus	Species	LC50/ EC50 (µg/L)	SMAV (µg/L)	GMAV (µg/L)	Reference	Comment
D	Daphnia	magna	320.0	207.0	207.0	MRID 45067801; Boeri and Ward. 2000	Quantitative
D	Daphnia	magna	470.0	507.0	307.0	ECOTOX 6797; Mayer and Ellersieck. 1986	Quantitative
F	Chironomus	plumosus	180.0	180.0	180.0	ECOTOX 6797; Mayer and Ellersieck. 1986	Quantitative
Е	Echinogammarus	tibaldii	297.0	297.0	297.0	ECOTOX 18621; Pantani et al. 1997	Qualitative
Е	Gammarus	italicus	217.8	217.8	217.8	ECOTOX 18621; Pantani et al. 1997	Qualitative
В	Carassius	auratus	27,500	27,500	27,500	MRID 66915; Knott and Johnston. 1969	Quantitative
С	Lepomis	macrochirus	5,600	7 492	7 492	MRID 66914; Knott and Johnston. 1969	Quantitative
С	Lepomis	macrochirus	10,000	7,465	7,465	ECOTOX 6797; Mayer and Ellersieck. 1986	Quantitative
А	Oncorhynchus	mykiss	4,200	4 200	4 200	MRID 66916; Knott and Johnston. 1969	Quantitative
А	Oncorhynchus	mykiss	4,200	4,200	4,200	ECOTOX 6797; Mayer and Ellersieck. 1986	Quantitative
В	Ictalurus	punctatus	19,400	19,400	19,400	ECOTOX 6797; Mayer and Ellersieck. 1986	Quantitative

Table 1. Acute toxicity of oxamyl to freshwater aquatic organisms.

a MDR Groups – Freshwater:

A. the family Salmonidae in the class Osteichthyes

B. a second family in the class Osteichthyes, preferably a commercially or recreationally important warmwater species (e.g., bluegill, channel catfish, etc.)

C. a third family in the phylum Chordata (may be in the class Osteichthyes or may be an amphibian, etc.)

D. a planktonic crustacean (e.g., cladoceran, copepod, etc.)

E. a benthic crustacean (e.g., ostracod, isopod, amphipod, crayfish, etc.)

F. an insect (e.g., mayfly, dragonfly, damselfly, stonefly, caddisfly, mosquito, midge, etc.)

G. a family in a phylum other than Arthropoda or Chordata (e.g., Rotifera, Annelida, Mollusca, etc.)

H. a family in any order of insect or any phylum not already represented.

OPP Acute Benchmark Values

The OPP invertebrate acute benchmark for oxamyl is 90 μ g/L, which is ½ of the *Chironomus plumosus* acute effect LC₅₀ of 180 μ g/L.

The OPP fish acute benchmark is 2,100 μ g/L, which is ½ of one of the two *Oncorhynchus mykiss* acute LC₅₀s of 4,200 μ g/L.

GLI Tier II Acute Value Calculation

The acceptable dataset for oxamyl fulfills six of the eight OW MDRs, corresponding to the use of a Secondary Acute Factor (SAF) of 5.2. Applying the SAF to the lowest (most sensitive) GMAV (i.e., 180 μ g/L for midge (*Chironomus pulmosus*)) yields the calculated Secondary Acute Value (SAV) of 34.6 μ g/L. Half of the SAV is 17.3 μ g/L.

Detailed calculations are shown below:

$$SAV = \frac{\text{Lowest GMAV}}{\text{SAF}}$$
$$SAV = \frac{180}{5.2} = 34.6 \ \mu g/L$$
$$SMC = \frac{\text{SAV}}{2}$$
$$SMC = \frac{34.6}{2} = 17.3 \ \mu g/L$$

Genus-Level Invertebrate-only HC05

The genus level invertebrate-only acute HC_{05} calculated following the U.S. EPA (1985) methodology for the four invertebrate genera in the oxamyl dataset (Table 2) is 114.7 µg/L (Table 3).

Tuble 21 Okumyt my	citebiate bitait vb	rusie 20 Ghuniyi ni (el testute si (ni (s unu Giviri (s (µg/2))										
Genus	Species	SMAV	GMAV	GMAV Rank								
Daphnia	magna	387.8	387.8	4								
Echinogammarus	tibaldii	297.0	297.0	3								
Gammarus	italicus	217.8	217.8	2								
Chironomus	plumosus	180.0	180.0	1								

Table 2. Oxamyl invertebrate SMAVs and GMAVs (µg/L).

Note: The *G. italicus* and *E. tibaldii* GMAVs are based on data classified as qualitative that were included to allow for sufficient sample size to calculate an invertebrate genus-level HC_{05} .

N	Rank	GMAV	ln(GMAV)	ln(GMAV) ²	P=R/(N+1)	sqrt(P)
4	4	387.8	5.961	35.53	0.8000	0.8944
	3	297	5.694	32.42	0.6000	0.7746
	2	217.8	5.384	28.98	0.4000	0.6325
	1	180	5.193	26.97	0.2000	0.4472
	Sum:		22.23	123.9	2.000	2.749
	$S^2 =$	3.095				
	L =	4.349				
	A =	4.742				
	HC ₀₅ =	114.7				

Table 3. Genus-level invertebrate-only acute HC₀₅ for oxamyl calculated following the U.S. EPA (1985) methodology.

Table 4. Comparison of acute values for oxamyl.

Magnitude relative to ALB is the OPP ALB/OW value, the ratio for the OPP value/OW value for each value comparison. A ratio >1 indicates the OPP value is higher than the OW value.

Pesticide	OPP Invertebrate ALB (lowest LC ₅₀ /2) (Year published, species)	OW GLI Tier II value (# of MDRs filled, magnitude relative to ALB)	OW Genus-level Invertebrate-only HC05/2 (# of genera, magnitude relative to ALB)	Notes
Oxamyl	90 μg/L (2016; Chironomus plumosus)	17.3 μg/L (6 MDRs filled, 5.2X)	57.35 μg/L (4 genera*, 1.6X)	* Two GMAVs included are based on data classified as qualitative were included to allow for sufficient sample size to calculate an invertebrate genus-level HC ₀₅ . Tests were classified as qualitative because they were conducted with field- collected organisms.

Figure 1 shows a genus-level sensitivity distribution for the oxamyl dataset. Major taxonomic groups are delineated by different symbols, and invertebrate genera are identified by name. Lines denoting the OPP acute benchmark values, GLI Tier II calculated acute value, and invertebrate-only acute $HC_{05}/2$ are included.

Figure 1. Oxamyl genus-level acute SD.

Symbols represent Genus Mean Acute Values (GMAVs) calculated using all available data from an EPA literature search in 2015, supplemented the Office of Pesticide Programs (OPP) registration review document for oxamyl (U.S. EPA 2009).

1.2.1.2 Oxamyl Chronic Toxicity Data

Chronic Data Sources and Considerations

Chronic toxicity data for oxamyl were consolidated by OW in 2015 and combined with data from OPP's registration review document for oxamyl (U.S. EPA 2009). The final chronic oxamyl dataset consisted of three NOECs/LOECS for three species across three genera, of which one was an invertebrate genus and two were vertebrate genera (Table 5).

OW MDR Group ^a	Genus	Species	NOEC (µg/L)	LOEC (µg/L)	Endpoint	Reference	Comment
D	Daphnia	magna	27	50	Growth (adult length), time to first brood and number of offspring	MRID 45067801; Boeri and Ward. 2000	Acceptable
А	Oncorhynchus	mykiss	770	1,500	Embryo hatching and larval swim-up	MRID 40901101; Hutton. 1988	Acceptable
В	Pimephales	promelas	500	1,000	Larval survival	MRID 94663; Muska and Driscoll. 1982	Acceptable

	Table 5. Chi	ronic toxicity da	ta of oxamyl to	o freshwater aq	uatic organisms.
--	--------------	-------------------	-----------------	-----------------	------------------

a MDR Groups - Freshwater:

A. the family Salmonidae in the class Osteichthyes

B. a second family in the class Osteichthyes, preferably a commercially or recreationally important warmwater species (e.g., bluegill, channel catfish, etc.)

C. a third family in the phylum Chordata (may be in the class Osteichthyes or may be an amphibian, etc.)

D. a planktonic crustacean (e.g., cladoceran, copepod, etc.)

E. a benthic crustacean (e.g., ostracod, isopod, amphipod, crayfish, etc.)

F. an insect (e.g., mayfly, dragonfly, damselfly, stonefly, caddisfly, mosquito, midge, etc.)

G. a family in a phylum other than Arthropoda or Chordata (e.g., Rotifera, Annelida, Mollusca, etc.)

H. a family in any order of insect or any phylum not already represented.

OPP Chronic Benchmark Values

The OPP invertebrate chronic benchmark for oxamyl is 27 μ g/L, which is the NOEC for *Daphnia magna*. The OPP fish chronic benchmark is 500 μ g/L, which is the NOEC for *Pimephales promelas*.

GLI Tier II Chronic Value Calculation

Per the 1985 Tier I Guidelines, ACRs can be calculated for a given species only if the acute and chronic studies were conducted in the same laboratory and using test water of the same physical and chemical characteristics. The OW approach for calculating an ACR involves the use of the MATC, which is the geometric mean of the NOAEC and LOAEC obtained from the chronic tests for that species. Only one ACR (for the water flea, *Daphnia magna*) could be calculated using the OW approach because the chronic study for rainbow trout (*Oncorhynchus mykiss*) was not performed in the same laboratory or with water of the same physical characteristics as the water used in the analogous acute test. Per the GLI Tier II methodology, the default ACR value of 18 was used for the remaining two ACRs.

Detailed calculations for the SCV are shown below:

SACR = Geometric Mean of the ACRs
SACR =
$$\sqrt[3]{8.71 * 18 * 18} = 14.1$$

SCV = $\frac{SAV}{SACR}$
SCV = $\frac{34.6}{14.1} = 2.4 \,\mu g/L$

Table 6. Comparison of chronic values for oxamyl.

Magnitude relative to ALB is the OPP ALB/OW value, the ratio for the OPP value/OW value for each value comparison. A ratio >1 indicates the OPP value is higher than the OW value.

Pesticide	OPP Invertebrate ALB (NOAEC) (Year published, species)	OW GLI Tier II value (# of ACRs filled, magnitude relative to ALB)	OW Invertebrate-only HC05 (# of ACRs filled, magnitude relative to ALB)	Notes
Oxamyl	27 μg/L (2016; Daphnia magna)	2.4 μg/L (GLI Tier II; 1 ACR, 11X)	NA	Two default ACRs of 18 used to derive GLI Tier II value

1.2.1.3 Oxamyl References

ECOTOX 18621. Pantani, C., Pannunzio, G., De Cristofaro, M., Novelli, A. A., and Salvatori, M. 1997. Comparative Acute Toxicity of Some Pesticides, Metals, and Surfactants to Gammarus italicus Goedm. and Echinogammarus tibaldii Pink. and Stock (Crustacea: Amphipoda). Bull. Environ. Contam. Toxicol. 59: 963-967.

ECOTOX 6797. Mayer, F. L. J., and Ellersieck, M. R. 1986. Manual of Acute Toxicity: Interpretation and Data Base for 410 Chemicals and 66 Species of Freshwater Animals. Resour. Publ. No. 160, U.S. Department of Interior, Fish and Wildlife Services, Washington, DC 505 p.

MRID 40901101. Hutton, D. 1988. Early Life Stage Toxicity of IN D1410-196 (Oxamyl) to Rainbow Trout: Medical Research Project No. 4581-573: Haskell Laboratory Report No. 468-88. Unpublished study prepared by E. I. du Pont de Nemours and Co., Inc. 24 p.

MRID 45067801. Boeri, R., and Ward, T. 2000. Oxamyl Technical: 21-Day Chronic, Flow-Through Toxicity to Daphnia magna: Lab Project Number: 3 10: 1757-DU: 2554. Unpublished study prepared by T.R. Wilbury Labs. 60 p.

MRID 66914. Knott, W. B., and Johnston, C. D. 1969. Insecticide 1410: Evaluation of Acute LC150A for Bluegill Sunfish. (Unpublished study received Nov 29, 1972 under 361316; prepared by Woodard Research Corp., submitted by E.I. du Pont de Nemours & Co., Inc., Wilmington, Del.; CDL:092249-AA).

MRID 66915. Knott, W. B., and Johnston, C. D. 1969. Insecticide 1410: Evaluation of Acute LC150A for Goldfish. (Unpublished study received Nov 29, 1972 under 3G1316; prepared by Woodard Research Corp., submitted by E.I. du Pont de Nemours & Co., Inc., Wilmington, Del.; CDL: 092249-AB).

MRID 66916. Knott, W. B., and Johnston, C. D. 1969. Insecticide 1410: Evaluation of Acute LC150A for Rainbow Trout. (Unpublished study received Nov 29, 1972 under 3613 16; prepared by Woodard Research Corp., submitted by E.I. du Pont de Nemours & Co., Inc., Wilmington, Del.; CDL:092249-AC).

MRID 94663. Muska, C.F., and Driscoll, R.R. 1982. Early Life Stage Toxicity of Oxamyl to Fathead Minnow: Haskell Laboratory Report No. 877-81. (Unpublished study received Jan 29, 1982 under 352-372; submitted by E.I. du Pont de Nemours & Co., Inc., Wilmington, Del.; CDL:246726-D).

U.S. EPA. 1985. Guidelines for derving numerical national water critera for the protection of aquatic organisms and their uses. United States Environmental Protection Agency. Stephan, C.E., D.I. Mount, D.J. Hansen, J.H. Gentile, G.A. Chapman and W.A. Brungs. PB85-227049. National Technical Information Service, Springfield, VA. U.S.

U.S. EPA. 2009. Risks of oxamyl use to federally threatened California red-legged frog (*Rana aurora draytonii*). Office of Pesticide Programs. Washington, D.C. February 12, 2009.

U.S. EPA. 2024. Draft Comparison of Aquatic Life Protective Values Developed for Pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Clean Water Act (CWA). EPA-820-D-24-002.

1.2.2 Comparison of Aquatic Life Toxicity Values for Acephate: Data Sources and Considerations

Data used in the *Draft Comparison of Aquatic Life Protective Values Developed for Pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Clean Water Act (CWA)* (U.S. EPA 2024) are described below. Toxicity data for acephate were gathered by OW in 2015 and combined with data from OPP's registration review document for acephate (U.S. EPA 2007).

1.2.2.1 Acephate Acute Toxicity Data

The acephate data include twelve LC_{508} representing seven species in seven genera that were classified as "quantitative" data and twenty-six LC_{508} representing eight species in eight genera classified as "qualitative" that appear to be acceptable tests given the available information. The final acute acephate dataset consisted of 45 LC_{508} for 18 total species across 16 genera, of which seven were invertebrate species across seven invertebrate genera. Ranked invertebrate GMAVs from all data sources are listed in Table 2. Acute data for acephate are shown in Table 1.

OW MDR Group ^a	Genus	Species	LC50/ EC50 (µg/L)	SMAV (µg/L)	GMAV (µg/L)	Reference	Comment
F	Ephemeridae ^b	-	3,136	3,136	3,136	ECOTOX 37219. Hussain et al. 1985	24hr. No species name
F	Pteronarcella	badia	21,200			ECOTOX 6797. Mayer and Ellersieck. 1986	
F	Pteronarcella	badia	6,400	10,883	10,883	ECOTOX 6797. Mayer and Ellersieck. 1986	
F	Pteronarcella	badia	9,500			ECOTOX 6797. Mayer and Ellersieck. 1986	
F	Isogenus	sp.	11,700	11,700	11,700	ECOTOX 6797. Mayer and Ellersieck. 1986	
F	Skwala	sp.	12,000	12,000	12,000	MRID 40094602. Johnson, W. and M. Finley. 1980	
D	Daphnia	magna	71,800		0.005	MRID 00014565. Wheeler. 1978.	
D	Daphnia	magna	1,110	8,927	8,927	MRID 40098001. McCann 1978	OPP Benchmark value, 75% formulation
Е	Gammarus	pseudolimneaus	>50,000			ECOTOX 6797. Mayer and Ellersieck. 1986	Qualitative
Е	Gammarus	pseudolimneaus	>50,000	>62,996	>62,996	ECOTOX 6797. Mayer and Ellersieck. 1986	Qualitative
Е	Gammarus	pseudolimneaus	>100,000			Schotteger 1970	
F	Chironomus	plumosus	>1,000,000			Johnson and Finley 1980	No endpoint or duration reported
F	Chironomus	plumosus	>50,000	>135,721	>135,721	ECOTOX 6797. Mayer and Ellersieck. 1986	48hr EC50
F	Chironomus	plumosus	>50,000			ECOTOX 6797. Mayer and Ellersieck. 1986	
Α	Oncorhynchus	mykiss	110,000			ECOTOX 6797. Mayer and Ellersieck. 1986	
А	Oncorhynchus	mykiss	1,100,000	530,010	>185,523	ECOTOX 6797. Mayer and Ellersieck. 1986	
А	Oncorhynchus	mykiss	783,840			ECOTOX 7317. Duangsawasdi. 1977.	

Table 1. Acute toxicity of acephate to freshwater aquatic organisms.

OW MDR Group ^a	Genus	Species	LC50/ EC50 (µg/L)	SMAV (µg/L)	GMAV (µg/L)	Reference	Comment
A	Oncorhynchus	mykiss	832,000			MRID 40094602. Johnson, W. and M. Finley. 1980	OPP Benchmark value
А	Oncorhynchus	clarkii	>50,000			ECOTOX 6797. Mayer and Ellersieck. 1986	Qualitative
А	Oncorhynchus	clarkii	>60,000			ECOTOX 6797. Mayer and Ellersieck. 1986	Qualitative
А	Oncorhynchus	clarkii	>100,000	> 64 040		ECOTOX 6797. Mayer and Ellersieck. 1986	Qualitative
А	Oncorhynchus	clarkii	>50,000	>04,940		ECOTOX 6797. Mayer and Ellersieck. 1986	Qualitative
А	Oncorhynchus	clarkii	>100,000			ECOTOX 6797. Mayer and Ellersieck. 1986	Qualitative
А	Oncorhynchus	clarkii	>50,000			ECOTOX 6797. Mayer and Ellersieck. 1986	Qualitative
А	Salmo	salar	>50,000			ECOTOX 6797. Mayer and Ellersieck. 1986	Qualitative
А	Salmo	salar	>50,000			ECOTOX 6797. Mayer and Ellersieck. 1986	Qualitative
А	Salmo	salar	>50,000			ECOTOX 6797. Mayer and Ellersieck. 1986	Qualitative
А	Salmo	salar	>50,000	>50.000	>50.000	ECOTOX 6797. Mayer and Ellersieck. 1986	Qualitative
А	Salmo	salar	>50,000	>50,000	>30,000	ECOTOX 6797. Mayer and Ellersieck. 1986	Qualitative
А	Salmo	salar	>50,000			ECOTOX 6797. Mayer and Ellersieck. 1986	Qualitative
А	Salmo	salar	>50,000			ECOTOX 6797. Mayer and Ellersieck. 1986	Qualitative
А	Salmo	salar	>50,000			ECOTOX 6797. Mayer and Ellersieck. 1986	Qualitative
А	Salvelinus	fontinalis	>50,000	>70 711	>70 711	ECOTOX 6797. Mayer and Ellersieck. 1986	Qualitative
А	Salvelinus	fontinalis	>100,000	>/0,/11	>/0,/11	MRID 40094602. Johnson, W. and M. Finley. 1980	Qualitative
В	Lepomis	macrochirus	>50,000	>91,028	>91,028	ECOTOX 6797. Mayer and Ellersieck. 1986	Qualitative

OW MDR Group ^a	Genus	Species	LC50/ EC50 (µg/L)	SMAV (µg/L)	GMAV (µg/L)	Reference	Comment
В	Lepomis	macrochirus	>1,000,000			ECOTOX 6797. Mayer and Ellersieck. 1986	Qualitative
В	Lepomis	macrochirus	>50,000			ECOTOX 6797. Mayer and Ellersieck. 1986	Qualitative
В	Lepomis	macrochirus	>50,000			ECOTOX 6797. Mayer and Ellersieck. 1986	Qualitative
В	Lepomis	macrochirus	>50,000			ECOTOX 6797. Mayer and Ellersieck. 1986	Qualitative
В	Ictalurus	punctatus	>1,000,000	>1,000,000	>1,000,000	ECOTOX 6797. Mayer and Ellersieck. 1986	Qualitative
В	Perca	flavescens	>50,000	>50,000	>50,000	ECOTOX 6797. Mayer and Ellersieck. 1986	Qualitative
В	Pimephales	promelas	>1,000,000	>1,000,000	>1,000,000	MRID 40094602 Johnson 1980	
С	Ambystoma	gracile	8,816,000	8,816,000	8,816,000	Geen 1984	
С	Rana	catesbelana	>5,000	>5,000	>170.346	MRID 44042901. Hall & Kolbe. 1980	Qualitative
С	Rana	clamitans	6433000	6,433,000	~179,340	Lyons et al. 1976	24hr, 90% formulation

a MDR Groups - Freshwater:

A. the family Salmonidae in the class Osteichthyes

B. a second family in the class Osteichthyes, preferably a commercially or recreationally important warmwater species (e.g., bluegill, channel catfish, etc.)

C. a third family in the phylum Chordata (may be in the class Osteichthyes or may be an amphibian, etc.)

D. a planktonic crustacean (e.g., cladoceran, copepod, etc.)

E. a benthic crustacean (e.g., ostracod, isopod, amphipod, crayfish, etc.)

F. an insect (e.g., mayfly, dragonfly, damselfly, stonefly, caddisfly, mosquito, midge, etc.)

G. a family in a phylum other than Arthropoda or Chordata (e.g., Rotifera, Annelida, Mollusca, etc.)

H. a family in any order of insect or any phylum not already represented.

b No species name provided; only Family provided

OPP Acute Benchmark Values

The invertebrate OPP acute benchmark is 550 μ g/L, which is ½ of the *D. magna* LC₅₀ of 1,110 μ g/L cited in U.S. EPA (2007). The fish OPP acute benchmark is 416,000 μ g/L, which is ½ of an *O. mykiss* LC₅₀ of 832,000 μ g/L cited in U.S. EPA (2007).

GLI Tier II Acute Value Calculation

The acceptable acute dataset for acephate fulfills seven of the eight MDRs, corresponding to the use of a Secondary Acute Factor (SAF) of 4.3. Applying the SAF to the lowest, most sensitive GMAV (i.e., 3,136 μ g/L for mayfly (*Ephemeridae* family)), the calculated Secondary Acute Value (SAV) is 729.3 μ g/L. The Secondary Maximum Criterion (SMC), which is calculated as half the SAV, is 364.7 μ g/L. Detailed calculations for the SMC are shown below:

$$SAV = \frac{\text{Lowest GMAV}}{\text{SAF}}$$
$$SAV = \frac{3,136}{4.3} = 729.3 \ \mu g/L$$
$$SMC = \frac{\text{SAV}}{2}$$
$$SMC = \frac{729.3}{2} = 364.7 \ \mu g/L$$

Genus-Level Invertebrate-only HC05

The genus-level invertebrate acute HC_{05} following the U.S. EPA (1985) methodology for the seven invertebrate genera in the acephate dataset (Table 2) was 2,138 µg/L (Table 3). The second most sensitive GMAV is for *Daphnia* and includes the OPP benchmark LC_{50} of 1,110 µg/L tested in a 75% formulation. Excluding the OPP acute benchmark LC_{50} above yields a genus-level invertebrate HC_{05} of 2,117 µg/L, calculated entirely from quantitative data.

Table 2. Acephate invertebrate SMAVs and GMAVs (µg/L).

· · · · · · · · · · · · · · · · · · ·				
Genus	Species	SMAV	GMAV	GMAV Rank
Chironomus	plumosus	>135,721 ^d	>135,721 ^d	7
Gammarus	pseudolimneaus	>62,996°	>62,996 ^c	6
Skwala	sp.	12,000	12,000	5
Isogenus	sp.	11,700	11,700	4
Pteronarcella	badia	10,883	10,883	3
Daphnia	magna	8,927 ^b	8,927 ^b	2
Ephemeridaea	-	3,136	3,136	1

a Family. Species name not reported.

b Geometric mean of quantitative value and OPP invertebrate benchmark value from test with 75% formulation.

c Geometric mean of two qualitative values from U.S. EPA (2015) and third value from U.S. EPA (2007).

d Geometric mean of three values from U.S. EPA (2007).

N	Rank	GMAV	ln(GMAV)	ln(GMAV) ²	P=R/(N+1)	sqrt(P)
7	4	11,700	9.367	87.75	0.5000	0.7071
	3	10,833	9.290	86.31	0.3750	0.6124
	2	8,927	9.097	82.75	0.2500	0.5000
	1	3,136	8.051	64.81	0.1250	0.3536
	Sum:		35.81	321.6	1.250	2.173
	$S^2 =$	16.12				
	L =	6.770				
	A =	7.668				
	FAV =	2,138				

Table 3. Genus-level invertebrate acute HC₀₅ for acephate calculated following the U.S. EPA (1985) methodology including a formulation test for *D. magna*.

Table 4. Comparison of acute values for acephate.

Magnitude relative to ALB is the OPP ALB/OW value, the ratio for the OPP value/OW value for each value comparison. A ratio <1 indicates the OPP value is lower than the OW value and a ratio >1 indicates the OPP value is higher than the OW value.

Pesticide	OPP Invertebrate ALB (lowest LC ₅₀ /2) (Year published, species)	OW GLI Tier II value (# of MDRs filled, magnitude relative to ALB)	OW Genus-level Invertebrate- only HC05/2 (# of genera, magnitude relative to ALB)	Notes
Acephate	550 μg/L (2007; Daphnia magna)	364.7 μg/L (7 MDRs filled, 1.5X)	1,069 μg/L (7 genera, 0.51X)	The FIFRA ALB was based on an acute toxicity test that used 75% pure acephate in a wettable powder formulation, producing an EC ₅₀ value of 1,100 μ g/L for water flea (<i>D. magna</i>). This acute toxicity test was not used in the GLI Tier II because the chemical purity was <90%.

Figure 1 shows a genus-level sensitivity distribution for the acephate dataset. Major taxonomic groups are delineated by different symbols, and invertebrate genera are identified by name. Lines denoting the OPP acute benchmark values, GLI Tier II calculated value and invertebrate-only acute $HC_{05}/2$ are also included.

Figure 1. Acephate genus-level acute SD.

Symbols represent Genus Mean Acute Values (GMAVs) calculated using all available data from an EPA literature search in 2015, supplemented the Office of Pesticide Programs (OPP) registration review document for acephate (U.S. EPA 2007).

1.2.2.2 Acephate Chronic Toxicity Data

Chronic Data Sources and Considerations

Chronic toxicity data for acephate were consolidated by OW in 2015 and combined with data from OPP's registration review document for acephate (U.S. EPA 2007). The final chronic acephate dataset consisted of one NOECs/LOEC for one invertebrate species (Table 5).

Table 5	Chronic	toxicity data	of ace	nhate to	freshwater a	austic organ	nisms
I apic 3.		iunicity uata	u or acc	phate to	ii con watch a	quant of gai	nama.

OW MDR Group ^a	Genus	Species	NOEC (µg/L)	LOEC (µg/L)	Endpoint	Reference	Comment
D	Daphnia	magna	150	375.0	Reduction in offspring	MRID 44466601; McCain. 1978	Supplemental

a MDR Groups - Freshwater:

A. the family Salmonidae in the class Osteichthyes

B. a second family in the class Osteichthyes, preferably a commercially or recreationally important warmwater species (e.g., bluegill, channel catfish, etc.)

C. a third family in the phylum Chordata (may be in the class Osteichthyes or may be an amphibian, etc.)

D. a planktonic crustacean (e.g., cladoceran, copepod, etc.)

E. a benthic crustacean (e.g., ostracod, isopod, amphipod, crayfish, etc.)

F. an insect (e.g., mayfly, dragonfly, damselfly, stonefly, caddisfly, mosquito, midge, etc.)

G. a family in a phylum other than Arthropoda or Chordata (e.g., Rotifera, Annelida, Mollusca, etc.)

H. a family in any order of insect or any phylum not already represented.

OPP Chronic Benchmark Values

The OPP invertebrate chronic benchmark for acephate is $150 \,\mu g/L$, which is the NOEC for *Daphnia magna*.

The OPP fish chronic benchmark is 5,760 μ g/L, which is the estimated NOEC for *Oncorhynchus mykiss*, extrapolated using most sensitive acute 96-h LC50 for rainbow trout (832,000 μ g/L) divided by 144.44 (highest rainbow trout ACR for organophosphates).

GLI Tier II Chronic Value Calculation

Quantitative chronic tests are not available for acephate. Therefore, per the GLI Tier II methodology, all three ACRs are the default value of 18, the geometric mean of which (i.e., the SACR) is 18. The calculated Secondary Chronic Value (SCV) for acephate is $40.52 \mu g/L$. Detailed calculations for the SCV are shown below:

$$SACR = Geometric Mean of the ACRs$$
$$SACR = \sqrt[3]{18 * 18 * 18} = 18$$
$$SCV = \frac{SAV}{SACR}$$
$$SCV = \frac{729.3}{18} = 40.52 \ \mu g/L$$

Table 6. Summary and comparison of chronic values for acephate.

Magnitude relative to ALB is the OPP ALB/OW value, the ratio for the OPP value/OW value for each value comparison. A ratio <1 indicates the OPP value is lower than the OW value and a ratio >1 indicates the OPP value is higher than the OW value.

Pesticide	OPP Invertebrate ALB (NOAEC) (Year published, species)	OW Tier II value (# of ACRs filled, magnitude relative to ALB)	OW Invertebrate- only HC ₀₅ (# of ACRs filled, magnitude relative to ALB)	Notes
Acephate	150 μg/L (2007, Daphnia magna)	40.52 μg/L (GLI Tier II; 0 ACRs, 3.7X)	NA	Three default ACRs of 18 used to derive GLI Tier II value.

1.2.2.3 Acephate References

ECOTOX 37219. Hussain M.A.; Mohamad R.B.; Oloffs P.C. 1985. Studies on the Toxicity, Metabolism, and Anticholinesterase Properties of Acephate and Methamidophos. J. Environ. Sci. Health Part B: Pestic. Food Contam. Agric. Wastes 20(1): 129-147.

ECOTOX 51716. Lyons D.B.; Buckner C.H.; McLeod B.B.; Sundaram K.M.S. 1976. The Effects of Fenitrothion, Matacil and Orthene on Frog Larvae. Rep. No. CC-X-129, Chemical Control Research Institute, Department of the Environment Canada, Ottawa, Ontario : 86 p.

ECOTOX 6797. Mayer, F. L. J. and Ellersieck, M. R. 1986. Manual of Acute Toxicity: Interpretation and Data Base for 410 Chemicals and 66 Species of Freshwater Animals. Resour. Publ. No. 160, U.S. Department of Interior, Fish and Wildlife Services, Washington, DC 505 p.

ECOTOX 7317. Duangsawasdi, M. 1977. Organophosphate Insecticide Toxicity in Rainbow Trout (Salmo gairdneri). Effects of Temperature and Investigations on the Sites of Action. Ph.D Thesis, University of Manitoba, Canada, Ph.D. Thesis, University of Manitoba, Manitoba, Canada : 138 p.

MRID 00014565. Wheeler, R. E., 1978. 48 Hour Acute Static Toxicity of Orthene (SX911) to 1st Stage Nymph Water Fleas (*Daphnia magna* Straus). Unpublished study conducted by Agricultural Research Laboratory, Richmond, California. Sponsored by Chevron Chemical Company, Ortho Division. Study completed August 25, 1978.

MRID 40094602 Johnson, W. and M. Finley. 1980. Handbook of Acute Toxicity of Chemicals to Fish and Aquatic Invertebrates: Resource Publication 137. US Fish and Wildlife Service, Washington, D.C. 106 p.

MRID 40098001 Mayer, F. and M. Ellersieck. 1986 Manual of Acute Toxicity: Interpretation and Data Base for 410 Chemicals and 66 Species of Freshwater Animals. US Fish & Wildlife Service, Resource Publication 160. 579 p.

MRID 44042901. Hall, R. J. and E. Kolbe. 1980. Bioconcentration of Organophosphorus Pesticides to Hazardous Levels by Amphibians. Journal of Toxicology and Environmental Health 6: 853 – 860.

MRID 44466601. McCann, J.A. 1978. U.S. Environmental Protection Agency, Pesticides Regulation Div., Agricultural Research Center, Animal Biology Laboratory, unpublished report.)

Geen, G.H., B.A. McKeown, T.A. Watson, and D.B. Parker. 1984. Effects of Acephate (Orthene) on Development and Survival of the Salamander, *Ambystoma gracile* (Baird). J. Environ. Sci. Health Part B Pestic. Food Contam. Agric. Wastes, 19, (2), 157-170. ECOREF#:11134

Johnson, W. and M. Finley. 1980. Handbook of Acute Toxicity of Chemicals to Fish and Aquatic Invertebrates: Resource Publication 137. US Fish and Wildlife Service, Washington, D.C. 106 p.

Mayer, F. L. J. and Ellersieck, M. R. 1986. Manual of Acute Toxicity: Interpretation and Data Base for 410 Chemicals and 66 Species of Freshwater Animals. Resour. Publ. No. 160, U.S. Department of Interior, Fish and Wildlife Services, Washington, DC 505 p.Mayer and Ellersiek 1986

Schoettger, R.A., and W.L. Mauck. 1978. Toxicity of Experimental Forest Insecticides to Fish and Aquatic Invertebrates. In: D.I.Mount, W.R.Swain, and N.K.Ivanikiw (Eds.), Proceedings of the First and Second USA-USSR Symposia on the Effects of Pollutants Upon Aquatic Ecosystems, 11-27.

U.S. EPA. 1985. Guidelines for derving numerical national water critera for the protection of aquatic organisms and their uses. United States Environmental Protection Agency. Stephan, C.E., D.I. Mount, D.J. Hansen, J.H. Gentile, G.A. Chapman and W.A. Brungs. PB85-227049. National Technical Information Service, Springfield, VA. U.S.

U.S. EPA. 2007. Risks of acephate use to the federally-listed California red legged frog (*Rana aurora draytonii*). Pesticide effects determination. Office of Pesticide Programs. Washington, D.C. July 19, 2007.

U.S. EPA. 2024. Draft Comparison of Aquatic Life Protective Values Developed for Pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Clean Water Act (CWA). EPA-820-D-24-002.

1.2.3 Comparison of Aquatic Life Toxicity Values for Dimethoate: Data Sources and Considerations

Data used in the *Draft Comparison of Aquatic Life Protective Values Developed for Pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Clean Water Act (CWA)* (U.S. EPA 2024) are described below. Toxicity data for dimethoate were gathered by OW in 2015 and combined with data from OPP's registration review document for dimethoate (U.S. EPA 2008).

1.2.3.1 Dimethoate Acute Toxicity Data

The dimethoate acute data include six LC_{50} s representing five species in five genera that were classified as "quantitative" data, two 96-hour LC_{50} s for the species *Poecilia reticulata* classified as "qualitative" that appear to be acceptable tests given the available information; and two "qualitative" 48-hour LC_{50} s for species within the genus *Chironomus* included in order to calculate an invertebrate-only HC₀₅.

The final acute dimethoate dataset consisted of eight quantitative LC_{50} s and two "qualitative" LC_{50} s for eight total species across seven genera, of which five were invertebrate species across four invertebrate genera. Acute data for dimethoate are shown in Table 1. Ranked invertebrate GMAVs (both quantitative and qualitative) are listed in Table 2.

OW MDR Group ^a	Genus	Species	LC50/ EC50 (µg/L)	SMAV (µg/L)	GMAV (µg/L)	Reference	Comment
F	Chironomus	riparius	481	481	345 4	ECOTOX 102849. Domingues et al. 2007	Duration, 48hr
F	Chironomus	dilutus	248	248	545.4	ECOTOX 74947. Anderson and Zhu 2004	Duration, 48hr
D	Daphnia	magna	3,154	3,154	3,154	ECOTOX 18476. Song et al. 1997	Represents 8 tests
F	Pteronarcys	californica	43	43	43	MRID 00003503. Johnson and Finley. 1980	Represents 3 tests
Е	Gammarus	lacustris	200	200	200	ECOTOX 6797. Mayer and Ellersieck 1986	Represents 2 tests
В	Poecilia	reticulata	548,800	420 708	420 708	ECOTOX 5180. Canton et al. 1980	OECD test- not publicly available
В	Poecilia	reticulata	336,600	429,798	429,798	ECOTOX 5370. Maas 1982	OECD test- not publicly available
В	Lepomis	macrochirus	6,000	6,000	6,000	ECOTOX 6797. Mayer and Ellersieck 1986	Represents 2 tests
А	Oncorhynchus	mykiss	8,600	7,302	7,302	ECOTOX 6797. Mayer and Ellersieck 1986	

Table 1. Acceptable acute toxicity data of dimethoate to freshwater aquatic organisms

OW MDR Group ^a	Genus	Species	LC50/ EC50 (µg/L)	SMAV (µg/L)	GMAV (µg/L)	Reference	Comment
А	Oncorhynchus	mykiss	6,200			ECOTOX 6797. Mayer and Ellersieck 1986	Represents 7 tests

a MDR Groups - Freshwater:

A. the family Salmonidae in the class Osteichthyes

- B. a second family in the class Osteichthyes, preferably a commercially or recreationally important warmwater species (e.g., bluegill, channel catfish, etc.)
- C. a third family in the phylum Chordata (may be in the class Osteichthyes or may be an amphibian, etc.)
- D. a planktonic crustacean (e.g., cladoceran, copepod, etc.)
- E. a benthic crustacean (e.g., ostracod, isopod, amphipod, crayfish, etc.)
- F. an insect (e.g., mayfly, dragonfly, damselfly, stonefly, caddisfly, mosquito, midge, etc.)
- G. a family in a phylum other than Arthropoda or Chordata (e.g., Rotifera, Annelida, Mollusca, etc.)
- H. a family in any order of insect or any phylum not already represented.

OPP Acute Benchmark Values

The OPP invertebrate acute benchmark is 21.5 μ g/L, which is ½ of the *Pteronarcys californica* LC₅₀ of 43 μ g/L cited in U.S. EPA (2008).

The OPP fish acute benchmark is 3,100 μ g/L, which is ½ of the *Oncorhynchus mykiss* LC₅₀ of 6,200 μ g/L cited in U.S. EPA (2008).

GLI Tier II Acute Value Calculation

The acceptable dataset for dimethoate represents five of the eight MDRs, corresponding to the use of a SAF of 6.1. Applying the SAF to the lowest, most sensitive GMAV (i.e., 43.0 μ g/L for stonefly (*Pteronarcys californica*)), the calculated SAV is 7.0 μ g/L. Half of the SAV is 3.5 μ g/L. The SMC of 3.5 μ g/L is lower than the most sensitive GMAV. Detailed calculations are shown below:

$$SAV = \frac{\text{Lowest GMAV}}{\text{SAF}}$$
$$SAV = \frac{43.0}{6.1} = 7.0 \ \mu g/L$$
$$SMC = \frac{\text{SAV}}{2}$$
$$SMC = \frac{7.0}{2} = 3.5 \ \mu g/L$$

Genus-Level Invertebrate-Only HC05

The genus-level invertebrate-only acute HC_{05} following the U.S. EPA (1985) methodology for the four invertebrate genera in the dimethoate dataset (Table 2) was 4.296 µg/L (Table 3).

Genus	Species	SMAV	GMAV	GMAV Rank
Daphnia	magna	3,154	3154	4
Chironomus Chironomus	riparius dilutus	481.0*	345.4	3
Gammarus	lacustris	200.0	200.0	2
Pteronarcys	californica	43.00	43.00	1

Table 2. Dimethoate invertebrate SMAVs and GMAVs (µg/L).

* Qualitative values (48-hour LC₅₀s).

Note: SMAVs and GMAVs for *Chironomus* sp. are 48-hour tests that were classified as qualitative in but are added here to meet minimum requirements to calculate a genus-level invertebrate HC₀₅.

Table 3. Genus-level invertebrate acute HC_{05} for dimethoate calculated following the U.S. EPA (1985) methodology.

N	Rank	GMAV	ln(GMAV)	ln(GMAV) ²	P=R/(N+1)	sqrt(P)
4	4	3154	8.056	64.906	0.8000	0.8944
	3	345.4	5.845	34.161	0.6000	0.7746
	2	200.0	5.298	28.072	0.4000	0.6325
	1	43.00	3.761	14.147	0.2000	0.4472
	Sum:		22.96	141.3	2.000	2.749
	$S^2 =$	85.34				
	L =	-0.608				
	A =	1.458				
	$HC_{05} =$	4.296				

Table 4. Summary and comparison of acute values for dimethoate.

Pesticide	OPP Invertebrate ALB (lowest LC50/2) (Year published, species)	OW GLI Tier II values(# of MDRs filled, magnitude relative to ALB)	OW Genus-level Invertebrate- only HC05/2 (# of genera, magnitude relative to ALB)	Notes
Dimethoate	21.5 μg/L (2016; Pteronarcys californica)	3.5 μg/L (5 MDRs filled, 6.1X)	2.15 μg/L (4 genera*, 10X)	The FIFRA ALB is half the LC ₅₀ reported for stonefly (<i>P. californica</i>), which was used as the basis for the GLI Tier II acute value. The genus-level invertebrate value is lower than the FIFRA ALB because of the relatively steep slope and small sample size calculated from the Guidelines algorithm, while the FIFRA ALB is half of the most sensitive GMAV. * GMAV for <i>Chironomus</i> sp. is based on data classified as qualitative that were included to allow for sufficient sample size to calculate a genus-level invertebrate value. Tests were classified as qualitative because it was for a non-standard duration (48-hours).

Magnitude relative to ALB is the OPP ALB/OW value, the ratio for the OPP value/OW value for each value comparison. A ratio >1 indicates the OPP value is higher than the OW value.

Figure 1 shows a genus-level sensitivity distribution for the dimethoate dataset. Major taxonomic groups are delineated by different symbols, and invertebrate genera are identified by name. Lines denoting the OPP acute benchmark values, GLI tier II calculated acute value, and invertebrate-only acute $HC_{05}/2$ are included.

Figure 1. Dimethoate genus-level acute SD.

Symbols represent Genus Mean Acute Values (GMAVs) calculated using all available data from an EPA literature search in 2015, supplemented the Office of Pesticide Programs (OPP) registration review document for dimethoate (U.S. EPA 2008).

1.2.3.2 Dimethoate Chronic Toxicity Data

Chronic Data Sources and Considerations

Chronic toxicity data for dimethoate were consolidated by OW in 2015 and combined with data from OPP's registration review document for dimethoate (U.S. EPA 2008). The final chronic dimethoate dataset consisted of two NOECs/LOECS for two species across two genera, of which one was an invertebrate and one was a vertebrate (Table 5).

Table 5. 0	Chronic toxicity	data of dimeth	noate to freshwate	er aquatic organisms
I upic ci v	smome comercy	und of annou	ioute to ii coli mut	I aquade of Sumbins

OW MDR Group ^a	Genus	Species	NOEC (µg/L)	LOEC (µg/L)	Endpoint	Reference	Comment
D	Daphnia	magna	40	100	Reproduction, survival and growth	MRID 42864701	Quantitative
А	Oncorhynchus	mykiss	430	840	Impaired growth	MRID 43106301, 43106302, 43106303	Quantitative

a MDR Groups - Freshwater:

A. the family Salmonidae in the class Osteichthyes

B. a second family in the class Osteichthyes, preferably a commercially or recreationally important warmwater species (e.g., bluegill, channel catfish, etc.)

C. a third family in the phylum Chordata (may be in the class Osteichthyes or may be an amphibian, etc.)

D. a planktonic crustacean (e.g., cladoceran, copepod, etc.)

E. a benthic crustacean (e.g., ostracod, isopod, amphipod, crayfish, etc.)

F. an insect (e.g., mayfly, dragonfly, damselfly, stonefly, caddisfly, mosquito, midge, etc.)

G. a family in a phylum other than Arthropoda or Chordata (e.g., Rotifera, Annelida, Mollusca, etc.)

H. a family in any order of insect or any phylum not already represented.

OPP Chronic Benchmark Values

The OPP invertebrate chronic benchmark is 0.5 μ g/L, which is the estimated NOEC for *Pteronarcys californica* using the ACR for *D. magna*. *P. california* LC50 (43 μ g/L) \div *D. magna* ACR (83) = 0.5 μ g/L.

The OPP fish chronic benchmark is 430 µg/L, which is the NOEC for Oncorhynchus mykiss.

GLI Tier II Chronic Value Calculation

Quantitative dimethoate chronic and acute toxicity data were available for water flea (*Daphnia magna*) and rainbow trout (*Oncorhynchus mykiss*), allowing for the calculation of two ACRs. The default value of 18 was used to fulfill the third ACR per the GLI Tier II methodology. ACRs were calculated using the test with the lowest acute endpoint. The rainbow trout (*Oncorhynchus mykiss*) test with the lowest acute endpoint (i.e., 6,200 μ g/L) was therefore used in the calculations.

The acute and chronic tests for water flea (*Daphnia magna*) and for rainbow trout (*Oncorhynchus mykiss*) were conducted in different laboratories, using water of different physical characteristics; therefore, the ACRs were calculated using the OPP methodology, which involves using the NOAEC as the chronic value. The calculated SCV is $0.3 \mu g/L$. Detailed calculations for the SCV are shown below:

SACR = Geometric Mean of the ACRs SACR = $\sqrt[3]{14.4 * 79 * 18} = 27.4$ SCV = $\frac{SAV}{SACR}$ SCV = $\frac{7.0}{27.4} = 0.3 \,\mu g/L$

Table 6. Summary and comparison of chronic values for dimethoate.

Magnitude relative to ALB is the OPP ALB/OW value, the ratio for the OPP value/OW value for each value comparison. A ratio >1 indicates the OPP value is higher than the OW value.

Pesticide	OPP Invertebrate ALB (NOAEC) (Year published, species)	OW Tier II value (# of ACRs filled, magnitude relative to ALB)	OW Invertebrate- only HC ₀₅ (# of ACRs filled, magnitude relative to ALB)	Notes
Dimethoate	0.5 μg/L (2016, estimated NOAEC value for <i>Pteronarcys</i> <i>californica</i> calculated using the ACR for <i>Daphnia magna</i>)	0.3 μg/L (GLI Tier II; 2 ACRs, 1.7X)	NA	One default ACR of 18 used to derive GLI Tier II value.

1.2.3.3 Dimethoate References

ECOTOX 102849. Domingues, I., Guilhermino, L., Soares, A. M. V. M., and Nogueira, A. J.A. 2007. Assessing Dimethoate Contamination in Temperate and Tropical Climates: Potential Use of Biomarkers in Bioassays with Two Chironomid Species. Chemosphere 69(1): 145-154.

ECOTOX 18476. Song, M. Y., Stark, J. D., and Brown, J. J. 1997. Comparative Toxicity of Four Insecticides, Including Imidacloprid and Tebufenozide, to Four Aquatic Arthropods. Environ. Toxicol. Chem. 16(12): 2494-2500.

ECOTOX 5180. Canton, J. H., Wegman, R. C. C., Van Oers, A., Tammer, A. H. M., Mathijssen-Spiekman, E. A. M., and Van den Broek, H. H. 1980. Environmental Toxicological Research with Dimethoate and Omethoate, Rep.No.121/80, Natl. Inst. Public Health Environ. Hyg.: 6 p.

ECOTOX 5370. Maas, J.L. 1982. Toxicity of Pesticides. Rep.No.82, Lab.for Ecotoxicol., Inst.for Inland Water Manag.and Waste Water Treatment 15: 4 p.

ECOTOX 6797. Mayer, F. L., and Ellersieck, M. R. 1986. Manual of Acute Toxicity: Interpretation and Data Base for 410 Chemicals and 66 Species of Freshwater Animals. Resour.Publ.No.160, U.S.Dep.Interior, Fish Wildl.Serv., Washington, DC : 505 p.

ECOTOX 74947. Anderson, T. D., and Zhu, K. Y. 2004. Synergistic and Antagonistic Effects of Atrazine on the Toxicity of Organophosphorodithioate and Organophosphorothioate Insecticides to Chironomus tentans (Diptera: Chironomidae). Pestic. Biochem. Physiol. 80(1): 54-64.

MRID 00003503. Johnson, W. and M. Finley. 1980. Handbook of Acute Toxicity of Chemicals to Fish and Aquatic Invertebrates: Resource Publication 137. US Fish and Wildlife Service, Washington, D.C. 106 p.

MRID 42864701. Wuthrich, V. 1990. Influence of Dimethoate on the Reproduction of Daphnia magna. Unpublished study conducted by RCC UMWELTCHEMIE AG, Itingen, Switzerland. Study number 264464. Sponsored by Dimethoate Task Force, Ingelheim, Germany and submitted by Cheminova Agro A/S, Harbonone-Lenmark, DK. Study completed December 20, 1990.

MRID 43106301 Strawn, T. and M. Muckerman. 1994. Early Life-stage Toxicity of Dimethoate to the Rainbow Trout (*Oncorhynchus mykiss*) Under Flow-through Conditions: Final Report: Lab Project Number: 40864. Unpublished study prepared by ABC Labs, Inc. 436.

MRID 43106302 Strawn, T. L., and M. Muckerman. 1994. Early Life-Stage Toxicity of Dimethoate to the Rainbow Trout (Oncorhynchus mykiss) under Flow-Through Conditions. Unpublished study conducted by ABC Laboratories, Inc., Columbia, Missouri. Report No 40864R. Sponsored by Cheminova Agro A/S, Lemvig, Denmark. Study submitted January 25, 1994.

MRID 43106303 Mahalik, R. and J. B Bussard. 1993. Method Validation for the Analysis of Dimethoate in Aquatic Test Water. Unpublished study conducted by ABC Laboratories, Inc., Columbia, Missouri. Report No. 40863. Sponsored by Cheminova Agro A/S, Lemvig, Denmark. Study submitted July 21, 1993.

U.S. EPA. 1985. Guidelines for derving numerical national water critera for the protection of aquatic organisms and their uses. United States Environmental Protection Agency. Stephan, C.E., D.I. Mount, D.J. Hansen, J.H. Gentile, G.A. Chapman and W.A. Brungs. PB85-227049. National Technical Information Service, Springfield, VA. U.S.

U.S. EPA. 2008. Risks of dimethoate use to the federally-listed California red legged frog (*Rana aurora draytonii*). Pesticide effects determination. Office of Pesticide Programs. Washington, D.C. January 31, 2008.

U.S. EPA. 2024. Draft Comparison of Aquatic Life Protective Values Developed for Pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Clean Water Act (CWA). EPA-820-D-24-002.

1.2.4 Comparison of Aquatic Life Toxicity Values for Phosmet: Data Sources and Considerations

Data used in the *Draft Comparison of Aquatic Life Protective Values Developed for Pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Clean Water Act (CWA)* (U.S. EPA 2024) are described below. Toxicity data for phosmet were gathered by OW in 2015 and combined with data from OPP's registration review document for phosmet (U.S. EPA 2009).

1.2.4.1 Phosmet Acute Toxicity Data

Acute data for phosmet include thirty-four LC_{50} s representing ten species in eight genera that were classified as "quantitative" data and one 48-hour LC_{50} for the fairy shrimp *Streptocephalus sealii* classified as qualitative, but included here to increase the number of invertebrate genera to four, thereby allowing the calculation of an invertebrate genus-level HC_{05} . This test was classified as qualitative because it was for a non-standard duration (48-hours).

The final acute phosmet dataset consisted of 35 LC_{50} s for 11 species across nine genera, of which four were invertebrate species representing four different genera. Acute data for phosmet are shown in Table1. The ranked invertebrate GMAVs are listed in Table 2.

OW MDR Group ^a	Genus	Species	LC50/ EC50 (µg/L)	SMAV (µg/L)	GMAV (µg/L)	Reference
D	Streptocephalus	sealii	170	170.0	170.0	MRID 40094602
D	Daphnia	magna	5.6	5.6	5.6	Mayer and Ellersieck 1986
Е	Gammarus	fasciatus	2.4	2.4	2.4	MRID 00063193; Sanders 1972
Е	Caecidotea	brevicauda	72			Mayer and Ellersieck 1986
Е	Caecidotea	brevicauda	90	80.50	80.50	Mayer and Ellersieck 1986
В	Pimephales	promelas	7,300	7,300	7,300	Mayer and Ellersieck 1986
В	Lepomis	macrochirus	1,000			Mayer and Ellersieck 1986
В	Lepomis	macrochirus	1,400			Mayer and Ellersieck 1986
В	Lepomis	macrochirus	1,000			Mayer and Ellersieck 1986
В	Lepomis	macrochirus	640			Mayer and Ellersieck 1986
В	Lepomis	macrochirus	200			Mayer and Ellersieck 1986
В	Lepomis	macrochirus	22			Mayer and Ellersieck 1986
В	Lepomis	macrochirus	60			Mayer and Ellersieck 1986
В	Lepomis	macrochirus	70			Mayer and Ellersieck 1986
В	Lepomis	macrochirus	180			Mayer and Ellersieck 1986
В	Lepomis	macrochirus	560			Mayer and Ellersieck 1986
В	Lepomis	macrochirus	200			Mayer and Ellersieck 1986
В	Lepomis	macrochirus	70	231.2	231.2	MRID 00063194; Julin and Sanders 1977
В	Micropterus	dolomieu	150.0	150.0	-	Mayer and Ellersieck 1986
В	Micropterus	salmoides	160.0	160.0	154.9	Mayer and Ellersieck 1986
Α	Oncorhynchus	tshawytscha	150.0	150.0	-	Mayer and Ellersieck 1986

Table 1. Acute toxicity data of phosmet to freshwater aquatic organisms.

OW MDR Group ^a	Genus	Species	LC50/ EC50 (µg/L)	SMAV (µg/L)	GMAV (µg/L)	Reference
А	Oncorhynchus	mykiss	280.0			Mayer and Ellersieck 1986
А	Oncorhynchus	mykiss	1,200			Mayer and Ellersieck 1986
А	Oncorhynchus	mykiss	1,600			Mayer and Ellersieck 1986
А	Oncorhynchus	mykiss	420.0			Mayer and Ellersieck 1986
А	Oncorhynchus	mykiss	130.0			Mayer and Ellersieck 1986
А	Oncorhynchus	mykiss	105.0			Mayer and Ellersieck 1986
А	Oncorhynchus	mykiss	480.0			Mayer and Ellersieck 1986
А	Oncorhynchus	mykiss	240.0			Mayer and Ellersieck 1986
А	Oncorhynchus	mykiss	560.0			Mayer and Ellersieck 1986
А	Oncorhynchus	mykiss	120.0			Mayer and Ellersieck 1986
А	Oncorhynchus	mykiss	300.0			Mayer and Ellersieck 1986
А	Oncorhynchus	mykiss	513.9	352.5	229.9	Julin and Sanders 1977
В	Ictalurus	punctatus	10,600			Mayer and Ellersieck 1986
В	Ictalurus	punctatus	11,000	10,798	10,798	MRID 00063194; Julin and Sanders 1977

a MDR Groups - Freshwater:

- A. the family Salmonidae in the class Osteichthyes
- B. a second family in the class Osteichthyes, preferably a commercially or recreationally important warmwater species (e.g., bluegill, channel catfish, etc.)
- C. a third family in the phylum Chordata (may be in the class Osteichthyes or may be an amphibian, etc.)
- D. a planktonic crustacean (e.g., cladoceran, copepod, etc.)
- E. a benthic crustacean (e.g., ostracod, isopod, amphipod, crayfish, etc.)
- F. an insect (e.g., mayfly, dragonfly, damselfly, stonefly, caddisfly, mosquito, midge, etc.)
- G. a family in a phylum other than Arthropoda or Chordata (e.g., Rotifera, Annelida, Mollusca, etc.)
- H. a family in any order of insect or any phylum not already represented.

OPP Benchmark Acute Values

The OPP invertebrate acute benchmark is 4.32 μ g/L, which is ½ of the *Daphnia magna* EC₅₀ of 8.64 μ g/L.

The OPP fish acute benchmark is 35 μ g/L, which is ½ of the *Lepomis macrochirus* LC₅₀ of 70 μ g/L.

GLI Tier II Acute Value Calculation

The acceptable dataset for phosmet represents five of the eight MDRs, corresponding to the use of an SAF of 6.1. Applying the SAF to the lowest, most sensitive GMAV (i.e., 2.4 μ g/L for scud (*Gammarus fasciatus*)), yields the SAV of 0.39 μ g/L. Half of the SAV is 0.20 μ g/L. The SMC of 0.20 μ g/L. Detailed calculations for the SMC are shown below:

$$SAV = \frac{\text{Lowest GMAV}}{\text{SAF}}$$

 $SAV = \frac{2.4}{6.1} = 0.39 \,\mu g/L$

$$SMC = \frac{SAV}{2}$$
$$SMC = \frac{0.39}{2} = 0.20 \ \mu g/L$$

Genus-Level Invertebrate-only HC₀₅

The genus-level invertebrate-only acute HC_{05} calculated following the U.S. EPA (1985) methodology for the four invertebrate genera in the phosmet dataset (Table 2) is 0.1480 μ g/L (Table 3).

Genus	Species	SMAV	GMAV	GMAV Rank					
Streptocephalus	sealii	170.0	170.0	4					
Caecidotea	brevicauda	80.50	80.50	3					
Daphnia	magna	5.600	5.600	2					
Gammarus	fasciatus	2.400	2.400	1					

Table 2. Phosmet invertebrate SMAVs and GMAVs (µg/L).

Note: The *S. sealii* GMAV is based on data classified as qualitative that were included to allow for a sufficient sample size to calculate an invertebrate genus-level HC_{05} .

Table 3.	Genus-le	evel inver	tebrate a	acute HC	los for ph	osmet ca	lculated foll	owing the U.	S.
EPA (19	85) meth	odology.							

N	Rank	GMAV	ln(GMAV)	ln(GMAV) ²	P=R/(N+1)	sqrt(P)
4	4	170	5.136	26.38	0.8000	0.8944
	3	80.50	4.388	19.26	0.6000	0.7746
	2	5.6	1.723	2.968	0.4000	0.6325
	1	2.4	0.8755	0.7664	0.2000	0.4472
	Sum:		12.12	49.37	2.000	2.749
	$S^2 =$	113.6				
	L =	-4.294				
	A =	-1.910				
	$HC_{05} =$	0.1480				

Note: The fourth most sensitive GMAV was classified as qualitative for the reason explained under *Data Sources* and *Considerations*.

Table 4. Summary and comparison of acute values for phosmet.

Magnitude relative to ALB is the OPP ALB/OW value, the ratio for the OPP value/OW value for each value comparison. A ratio <1 indicates the OPP value is lower than the OW value and a ratio >1 indicates the OPP value is higher than the OW value.

Pesticide	OPP Invertebrate ALB (lowest LC50/2) (Year published, species)	OPP GLI Tier II values (# of MDRs filled, magnitude relative to ALB)	OW Genus- level Invertebrate- only HC ₀₅ /2 (# of genera, magnitude relative to ALB)	Notes
Phosmet	4.32 μg/L (2023; Daphnia magna)	0.20 μg/L (5 MDRs filled, 22X)	0.074 μg/L (4 genera*, 58X)	The FIFRA ALB is based on an acute toxicity test that used 51% TEP, producing an EC ₅₀ value of 8.64 µg/L for water flea (<i>D.</i> <i>magna</i>). This acute toxicity test was not used in the GLI Tier II or genus-level invertebrate value calculations as per the Guidelines. The genus-level invertebrate value is lower than the FIFRA ALB because the most sensitive SMAV is an EC ₅₀ of 2.4 µg/L for scud (<i>G. fasciatus</i>). This study was not used to derive the FIFRA ALB because it was categorized as "qualitative" as the raw data was not available. * GMAV for the spiny-tail fairy shrimp <i>Streptocephalus sealii</i> is based on data classified as qualitative that were included to allow for sufficient sample size to calculate a genus-level invertebrate value. The test was classified as qualitative because it was for a non-standard duration (48-hours).

Figure 1 shows a genus-level sensitivity distribution for the phosmet dataset. Major taxonomic groups are delineated by different symbols, and invertebrate genera are identified by name. Lines denoting the OPP benchmark acute values, the GLI Tier II calculated value, and invertebrate-only acute $HC_{05}/2$ are included.

Figure 1. Phosmet genus-level SD.

Symbols represent Genus Mean Acute Values (GMAVs) calculated using all available data from an EPA literature search in 2015, supplemented the Office of Pesticide Programs (OPP) registration review document for phosmet (U.S. EPA 2009).

1.2.4.2 Phosmet Chronic Toxicity Data

Chronic Data Sources and Considerations

Chronic toxicity data for phosmet were gathered from by OW in 2015 for phosmet and combined with data from OPP's registration review document for phosmet (U.S. EPA 2009). The final chronic phosmet dataset consisted of four NOECs/LOECS for four species across four genera. One test was an invertebrate genus and three were vertebrate genera (Table 5).

OW MDR Group ^a	Genus	Species	NOEC (µg/L)	LOEC (µg/L)	Endpoint	Reference	Comment
D	Daphnia	magna	0.75	1.0	Reduced number of offspring	MRID 40652801; Burgess. 1988	Quantitative
А	Oncorhynchus	mykiss	3.2	6.1	Reduction in growth	MRID 40938701; Cohle. 1988	Quantitative
В	Pimephales	promelas	1.0	9.3	Survival and fertilization success	MRID 48673002; York. 2012	Acceptable
С	Xenopus	laevis	8.1	9.6	Metamorphosis	MRID 48673001; Lee. 2012	Acceptable

Table 5. Chronic toxicity data of phosmet to freshwater aquatic organis

a MDR Groups - Freshwater:

A. the family Salmonidae in the class Osteichthyes

B. a second family in the class Osteichthyes, preferably a commercially or recreationally important warmwater species (e.g., bluegill, channel catfish, etc.)

C. a third family in the phylum Chordata (may be in the class Osteichthyes or may be an amphibian, etc.)

D. a planktonic crustacean (e.g., cladoceran, copepod, etc.)

E. a benthic crustacean (e.g., ostracod, isopod, amphipod, crayfish, etc.)

F. an insect (e.g., mayfly, dragonfly, damselfly, stonefly, caddisfly, mosquito, midge, etc.)

G. a family in a phylum other than Arthropoda or Chordata (e.g., Rotifera, Annelida, Mollusca, etc.)

H. a family in any order of insect or any phylum not already represented.

OPP Chronic Benchmark Values

The OPP invertebrate chronic benchmark is 0.75 µg/L, which is the NOEC for Daphnia magna.

The OPP fish chronic benchmark is 1.0 µg/L, which is the NOEC for *Pimephales promelas*.

GLI Tier II Chronic Value Calculation

Quantitative phosmet chronic and acute toxicity data were available for rainbow trout (*Oncorhynchus mykiss*) and water flea (*Daphnia magna*), allowing for the calculation of two ACRs. The default value of 18 was used to fulfill the third ACR per the GLI Tier II methodology. The quantitative acute and chronic tests for the water flea (*Daphnia magna*) and rainbow trout (*Oncorhynchus mykiss*) were conducted in different laboratories, using water of different physical characteristics; therefore the ACRs were calculated using the OPP methodology, which involves using the NOAECs as the chronic values. Detailed calculations for the SCV, which was calculated as $0.02 \mu g/L$, are shown below:

SACR = Geometric Mean of the ACRs

 $SACR = \sqrt[3]{7 * 32.8 * 18} = 16.0$

$$SCV = \frac{SAV}{SACR}$$
$$SCV = \frac{0.39}{16.0} = 0.02 \ \mu g/L$$

Table 6. Comparison of chronic values for phosmet.

Magnitude relative to ALB is the OPP ALB/OW value, the ratio for the OPP value/OW value for each value comparison. A ratio >1 indicates the OPP value is higher than the OW value.

Pesticide	OPP Invertebrate ALB (NOAEC) (Year published, species)	OW Tier II value (# of ACRs filled, magnitude relative to ALB)	OW Invertebrate- only HC ₀₅ (# of ACRs filled, magnitude relative to ALB)	Notes
Phosmet	0.75 μg/L (2023, Daphnia magna)	0.02 μg/L (GLI Tier II; 2 ACRs, 38X)	NA	One default ACR of 18 used to derive GLI Tier II value.

1.2.4.3 Phosmet References

ECOTOX 6797. Mayer, F. L. J., and Ellersieck, M. R. 1986. Manual of Acute Toxicity: Interpretation and Data Base for 410 Chemicals and 66 Species of Freshwater Animals. Resour. Publ. No. 160, U.S. Department of Interior, Fish and Wildlife Services, Washington, DC 505 p.

MRID 00063193. Sanders, H.O. 1972. Toxicity of some insecticides to four species of Malacostracan crustaceans. U.S. Fish and Wildlife Service, Fish-Pesticide Research Laboratory. Washington, D.C.: USFWS. Technical papers of the Bureau of Sport Fisheries and Wildlife 66; published study; CDL:232666-T.

MRID 00063194 and ECOTOX 857. Julin, A. M., and Sanders, H.O. 1977. Toxicity and accumulation of the insecticide imidan in freshwater invertebrates and fishes. Transactions of the American Fisheries Society. 106(4):386-392.

MRID 40652801. Burgess, D. 1988. Chronic toxicity of 14C-Imidan to Daphnia magna under flow-through test conditions. Analytical bio-chemistry laboratories, Inc.; Report No. 35778. (Unpublished report received August 10, 1988; submitted by ICI Americas, Inc. under EPA Accession No. 406528-01).

MRID 40938701. Cohle, P. 1988. Early life stage toxicity of C14-Phosmet to rainbow trout (Salmo gairdneri), in a flow through system. Prepared by ABC Laboratories, Inc. Columbia, MO. Submitted by ICI Agrochemicals, England.

MRID 48673001. Lee, M. 2012. Phosmet - Amphibian Metamorphosis Assay with African Clawed Frog (Xenopus laevis). Project Number: 12791/6142. Unpublished study prepared by Smithers Viscient Laboratories. 127 p. Relates to L0001444.

MRID 48673002. York, D. 2012. Phosmet - Short-Term Reproduction Assay with Fathead Minnow (Pimephales promelas). Project Number: 12791/6143. Unpublished study prepared by Smithers Viscient Laboratories. 161 p. Relates to L0001444.

U.S. EPA. 1985. Guidelines for derving numerical national water critera for the protection of aquatic organisms and their uses. United States Environmental Protection Agency. Stephan, C.E., D.I. Mount, D.J. Hansen, J.H. Gentile, G.A. Chapman and W.A. Brungs. PB85-227049. National Technical Information Service, Springfield, VA. U.S.

U.S. EPA. 2009. Problem formulation for the environmental fate and ecological risk, endangered species, and drinking water assessments in support of the registration review of phosmet. Office of Pesticide Programs. Washington, D.C. April 16, 2009.

U.S. EPA. 2024. Draft Comparison of Aquatic Life Protective Values Developed for Pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Clean Water Act (CWA). EPA-820-D-24-002

1.2.5 Comparison of Aquatic Life Toxicity Values for Terbufos: Data Sources and Considerations

Data used in the *Draft Comparison of Aquatic Life Protective Values Developed for Pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Clean Water Act (CWA)* (U.S. EPA 2024) for terbufos are described below. Toxicity data for terbufos were gathered by OW in 2015 and combined with data from OPP's registration review document for terbufos (U.S. EPA 2015).

1.2.5.1 Terbufos Acute Toxicity Data

The final acute terbufos dataset consisted of 33 LC_{50} s for nine species representing nine genera, of which five were invertebrate species representing five invertebrate genera. Acute data for terbufos are shown in Table 1. The invertebrate GMAVs are listed in Table 2.

OW MDR Group ^a	Genus	Species	LC50/ EC50 (µg/L)	SMAV (µg/L)	GMAV (µg/L)	Reference	Comment
D	Ceriodaphnia	dubia	0.139	0.1296	0.1296	ECOTOX 153854. Choung et al. 2011	Quantitative, >98% a.i.
D	Ceriodaphnia	dubia	0.119	0.1286	0.1286	ECOTOX 153854. Choung et al. 2012	Quantitative, >98% a.i.
Е	Daphnia	magna	0.400	0.2608	0.2608	ECOTOX 6797. Mayer and Ellersieck. 1986	Quantitative, 88% a.i.
Е	Daphnia	magna	0.170	0.2000	0.2000 0.2008	MRID 00101495	
Е	Gammarus	pseudolimnaeus	0.200	0.2000	0.2000	ECOTOX 6797. Mayer and Ellersieck. 1986	Quantitative, 88% a.i.
Е	Procambarus	clarkii	5.782	6 801	6 801	ECOTOX 18475. Fornstrom et al. 1997	Qualitative, control mortality; organisms fed during experiment
Е	Procambarus	clarkii	8.0	0.801	0.001	MRID 00085176	
F	Chironomus	plumosus	1.4	1.400	1.400	ECOTOX 6797. Mayer and Ellersieck. 1986	Quantitative, 88% a.i.
А	Oncorhynchus	mykiss	10.00			ECOTOX 6797. Mayer and Ellersieck. 1986	Quantitative, 88% a.i.
А	Oncorhynchus	mykiss	13.00			ECOTOX 6797. Mayer and Ellersieck. 1986	Quantitative, 88% a.i.
А	Oncorhynchus	mykiss	7.600			ECOTOX 6797. Mayer and Ellersieck. 1986	Quantitative, 88% a.i.
А	Oncorhynchus	mykiss	8.400			ECOTOX 6797. Mayer and Ellersieck. 1986	Quantitative, 88% a.i.
А	Oncorhynchus	mykiss	10.00	10.45	10.45	ECOTOX 6797. Mayer and Ellersieck. 1986	Quantitative, 88% a.i.
А	Oncorhynchus	mykiss	13.20			ECOTOX 6797. Mayer and Ellersieck. 1986	Quantitative, 88% a.i.
А	Oncorhynchus	mykiss	15.30			ECOTOX 6797. Mayer and Ellersieck. 1986	Quantitative, 88% a.i.
А	Oncorhynchus	mykiss	8.600			ECOTOX 6797. Mayer and Ellersieck. 1986	Quantitative, 88% a.i.
А	Oncorhynchus	mykiss	11.50			ECOTOX 6797. Mayer and Ellersieck. 1986	Quantitative, 88% a.i.

Table 1. Acute toxicity data of terbufos to freshwater aquatic organisms.
OW MDR Group ^a	Genus	Species	LC50/ EC50 (µg/L)	SMAV (µg/L)	GMAV (µg/L)	Reference	Comment
А	Oncorhynchus	mykiss	9.400			MRID 00037483. Sleight. 1972	Quantitative, 86.3% a.i.
А	Salmo	trutta	20	20.00	20.00	MRID 00087718	
В	Pimephales	promelas	12.870	70.85	70.85	ECOTOX 14097. Call et al. 1989	Qualitative, Source of test species unknown; dechlorinated tap water used; no replicate
В	Pimephales	promelas	390.0			ECOTOX 6797. Mayer and Ellersieck. 1986	Quantitative, 88% a.i.
C	Lepomis	macrochirus	1.700			ECOTOX 6797. Mayer and Ellersieck. 1986	Quantitative, 88% a.i.
С	Lepomis	macrochirus	2.400			ECOTOX 6797. Mayer and Ellersieck. 1986	Quantitative, 88% a.i.
С	Lepomis	macrochirus	2.000			ECOTOX 6797. Mayer and Ellersieck. 1986	Quantitative, 88% a.i.
С	Lepomis	macrochirus	1.600			ECOTOX 6797. Mayer and Ellersieck. 1986	Quantitative, 88% a.i.
С	Lepomis	macrochirus	1.500			ECOTOX 6797. Mayer and Ellersieck. 1986	Quantitative, 88% a.i.
С	Lepomis	macrochirus	1.800	1 560	1 560	ECOTOX 6797. Mayer and Ellersieck. 1986	Quantitative, 88% a.i.
С	Lepomis	macrochirus	1.500	1.309	1.509	ECOTOX 6797. Mayer and Ellersieck. 1986	Quantitative, 88% a.i.
С	Lepomis	macrochirus	1.500			ECOTOX 6797. Mayer and Ellersieck. 1986	Quantitative, 88% a.i.
С	Lepomis	macrochirus	1.100			ECOTOX 6797. Mayer and Ellersieck. 1986	Quantitative, 88% a.i.
С	Lepomis	macrochirus	0.770			MRID 00087718. Roberts and Wineholt. 1976	Quantitative, 86% a.i.
С	Lepomis	macrochirus	3.80			MRID 00037483	
C	Lepomis	macrochirus	0.87			MRID 00085176	

a MDR Groups – Freshwater:

A. the family Salmonidae in the class OsteichthyesB. a second family in the class Osteichthyes, preferably a commercially or recreationally important warmwater species (e.g., bluegill, channel catfish,

etc.)

C. a third family in the phylum Chordata (may be in the class Osteichthyes or may be an amphibian, etc.)

D. a planktonic crustacean (e.g., cladoceran, copepod, etc.)E. a benthic crustacean (e.g., ostracod, isopod, amphipod, crayfish, etc.)

F. an insect (e.g., mayfly, dragonfly, damselfly, stonefly, caddisfly, mosquito, midge, etc.)

G. a family in a phylum other than Arthropoda or Chordata (e.g., Rotifera, Annelida, Mollusca, etc.)

H. a family in any order of insect or any phylum not already represented.

OPP Benchmark Acute Values

The OPP invertebrate acute benchmark is 0.085 μ g/L, which is ½ of the *Daphnia magna* acute test value of 0.17 μ g/L.

The OPP fish acute benchmark is 0.385 μ g/L, which is ½ of the *Lepomis macrochirus* acute LC₅₀ of 0.770 μ g/L.

GLI Tier II Acute Value Calculation

The Method B acute dataset for terbufos fulfills five of the eight MDRs, corresponding to the use of a Secondary Acute Factor (SAF) of 6.1. Applying the SAF to the lowest, most sensitive GMAV (i.e., 0.128 μ g/L for water flea (*Ceriodaphnia dubia*)), yields the calculated Secondary Acute Value (SAV) of 0.021 μ g/L. The Secondary Maximum Criterion (SMC), which is calculated as half the SAV, is 0.011 μ g/L.

Detailed calculations for the SMC are shown below:

$$SAV = \frac{\text{Lowest GMAV}}{\text{SAF}}$$
$$SAV = \frac{0.128}{6.1} = 0.021 \,\mu g/L$$
$$SMC = \frac{\text{SAV}}{2}$$
$$SMC = \frac{0.021}{2} = 0.011 \,\mu g/L$$

Genus-Level Invertebrate-only Acute HC05

The genus-level invertebrate-only acute HC_{05} calculated following the U.S. EPA (1985) methodology for the five invertebrate genera (Table 2) in the terbufos dataset is 0.0283 µg/L (Table 3).

Genus	Species	SMAV	GMAV	GMAV Rank
Procambarus	clarkii	6.801	6.801	5
Chironomus	plumosus	1.400	1.400	4
Daphnia	magna	0.2608	0.2608	3
Gammarus	pseudolimnaeus	0.2000	0.2000	2
Ceriodaphnia	dubia	0.1268	0.1268	1

Table 2. Terbufos invertebrate SMAV and GMAV (µg/L).

Note: The *Procambarus clarkii* SMAV and GMAV is the geometric mean of a qualitative LC_{50} used to fill an MDR group and an acceptable LC_{50} listed in the OPP registration review document.

N	Rank	GMAV	ln(GMAV)	ln(GMAV) ²	P=R/(N+1)	sqrt(P)
5	4	1.400	0.336	0.11	0.6667	0.8165
	3	0.2608	-1.344	1.81	0.5000	0.7071
	2	0.2000	-1.609	2.59	0.3333	0.5774
	1	0.1286	-2.051	4.206	0.1667	0.4082
	Sum:		-4.67	8.72	1.6667	2.5092
	$S^2 =$	35.285				
	L =	-4.893				
	A =	-3.565				
	$HC_{05} =$	0.0283				

Table 3. Genus-level invertebrate-only acute HC₀₅ for terbufos calculated following the U.S. EPA (1985) methodology.

Table 4. Comparison of acute values for terbufos.

Magnitude relative to ALB is the OPP ALB/OW value, the ratio for the OPP value/OW value for each value comparison. A ratio <1 indicates the OPP value is lower than the OW value and a ratio >1 indicates the OPP value is higher than the OW value.

Pesticide	OPP Invertebrate ALB (lowest LC50/2) (Year published, species)	OPP GLI Tier II value (# of MDRs filled, magnitude relative to ALB)	OW Genus-level Invertebrate-only HC05/2 (# of genera, magnitude relative to ALB)
Terbufos	0.085 μg/L	0.011 μg/L	0.014 μg/L
	(2023; Daphnia magna)	(5 MDRs filled, 7.7X)	(4 genera, 6.1X)

Figure 1 shows a genus-level sensitivity distribution for the terbufos dataset. Major taxonomic groups are delineated by different symbols, and invertebrate genera are identified by name. Lines denoting the OPP acute benchmark values, GLI Tier II calculated acute value and invertebrate-only acute $HC_{05}/2$ are included.

Figure 1. Terbufos genus-level acute SD.

Symbols represent Genus Mean Acute Values (GMAVs) calculated using all available data from an EPA literature search in 2015, supplemented the Office of Pesticide Programs (OPP) registration review document for terbufos (U.S. EPA 2015).

1.2.5.2 Terbufos Chronic Toxicity Data

Chronic Data Sources and Considerations

Chronic toxicity data for terbufos were gathered by OW in 2015 for terbufos and combined with data from OPP's registration review document for terbufos (U.S. EPA 2015). The final chronic terbufos dataset consisted of two NOECs/LOECS for two species across two genera, of which one was an invertebrate and one was a vertebrate (Table 5).

OW MDR Group ^a	Genus	Species	NOEC (µg/L)	LOEC (µg/L)	Endpoint	Reference
D	Daphnia	magna	0.030	0.076	Reductions in length and number of offspring	MRID 00162525; Forbis et al. 1986
А	Oncorhynchus	mykiss	0.640	1.400	Reduced length and wet weight	MRID 41475801; Tank et al. 1990; MRID 41475802; Rhodes and McCallister 1990

Table 5. Chronic toxicity data of terbufos to freshwater aquatic organisms.

a MDR Groups - Freshwater:

A. the family Salmonidae in the class Osteichthyes

B. a second family in the class Osteichthyes, preferably a commercially or recreationally important warmwater species (e.g., bluegill, channel catfish, etc.)

C. a third family in the phylum Chordata (may be in the class Osteichthyes or may be an amphibian, etc.)

D. a planktonic crustacean (e.g., cladoceran, copepod, etc.)

E. a benthic crustacean (e.g., ostracod, isopod, amphipod, crayfish, etc.)

F. an insect (e.g., mayfly, dragonfly, damselfly, stonefly, caddisfly, mosquito, midge, etc.)

G. a family in a phylum other than Arthropoda or Chordata (e.g., Rotifera, Annelida, Mollusca, etc.)

H. a family in any order of insect or any phylum not already represented.

OPP Chronic Benchmark Values

The OPP invertebrate chronic benchmark is 0.03 µg/L, which is the NOEC for *Daphnia magna*.

The OPP fish chronic benchmark is $0.10 \mu g/L$, which is the estimated NOEC for *Lepomis macrochirus*. Bluegill sunfish sensitivity to terbufos on a chronic basis was estimated using an acute to chronic ratio (ACR) because it is the most acutely sensitive species. The ACR was based on rainbow trout (acute and chronic toxicity) and bluegill sunfish (acute toxicity) data.

GLI Tier II Chronic Value Calculation

Paired quantitative acute and chronic toxicity data were available for water flea (*Daphnia magna*) and rainbow trout (*Oncorhynchus mykiss*) allowing for the calculation of two ACRs. While the chronic tests used >90% pure terbufos, the acute tests did not. Per the GLI Tier II methodology, the default value of 18 was used to fulfill the remaining ACR. The acute and chronic tests for water flea (*Daphnia magna*) and rainbow trout (*Oncorhynchus mykiss*) were conducted in different laboratories, using water of different physical characteristics. Therefore, the OPP approach was used to calculate the SACR, which involves the use of the NOAEC value. The calculated SCV for terbufos is $0.0014 \mu g/L$.

Detailed calculations for the SCV are shown below:

$$SACR = Geometric Mean of the ACRs$$
$$SACR = \sqrt[3]{13.33 * 14.69 * 18} = 15.22$$
$$SCV = \frac{SAV}{SACR}$$
$$SCV = \frac{0.021}{15.22} = 0.0014 \ \mu g/L$$

Table 6. Summary and comparison of chronic values for terbufos.

Magnitude relative to ALB is the OPP ALB/OW value, the ratio for the OPP value/OW value for each value comparison. A ratio >1 indicates the OPP value is higher than the OW value.

Pesticide	OPP Invertebrate ALB (NOAEC) (Year published, species)	OW Tier II value (# of ACRs filled, magnitude relative to ALB)	OW Invertebrate- only HC ₀₅ (# of ACRs filled, magnitude relative to ALB)	Notes
Terbufos	0.03 μg/L (2023, Daphnia	0.0014 μg/L (GLI Tier II: 2	NA	One default ACR of 18 used to derive GLI Tier II
	magna)	ACRs, 21X)		value.

1.2.5.3 Terbufos References

ECOTOX 14097. Call D.J., Poirier S.H., Lindberg C.A., Harting S.L., Markee T.P., Brooke L.T., Zarvan N., and Northcott C.E. 1989. Toxicity of Selected Uncoupling and Acetylcholinesterase-Inhibiting Pesticides to the Fathead Minnow (Pimephales promelas). In: D.L.Weigmann (Ed.), Pesticides in Terrestrial and Aquatic Environments, Proc.Natl.Res.Conf., Virginia Polytechnic Inst.and State Univ., Blacksburg, VA : 317-336.

ECOTOX 153854. Choung C.B., Hyne R.V., Stevens M.M., and Hose G.C. 2011. Toxicity of the Insecticide Terbufos, Its Oxidation Metabolites, and the Herbicide Atrazine in Binary Mixtures to Ceriodaphnia cf dubia. Arch. Environ. Contam. Toxicol. 60(3): 417-425.

ECOTOX 18475. Fornstrom C.B., Landrum P.F., Weisskopf C.P, and LaPoint T.W. 1997. Effects of Terbufos on Juvenile Red Swamp Crayfish (Procambarus clarkii): Differential Routes of Exposure. Environ. Toxicol. Chem. 16(12): 2514-2520.

ECOTOX 6797. Mayer F.L.J. and Ellersieck M.R. 1986. Manual of Acute Toxicity: Interpretation and Data Base for 410 Chemicals and 66 Species of Freshwater Animals. Resour. Publ. No. 160, U.S. Department of Interior, Fish and Wildlife Services, Washington, DC 505 p.

MRID 00037483. Sleight B.H., III. 1972. The Acute Toxicity of Cycocel^(R)4 and Experimental Insecticide AC 92,100 to Bluegill (~Lepomis mac~ μ - μ ~rochirus~ μ) and Rainbow Trout (~Salmo gairdneri~ μ). (Unpublished study received Apr 9, 1973 under 3G1340; prepared by Bionomics, Inc., submitted by American Cyanamid Co., Princeton, N.J.; CDL:093584-U).

MRID 00085176. Bentley, R. E., and K. J. Macek. 1973. Acute Toxicity of Counter to Bluegill (*Lepomis macrochirus*), Channel Catfish (*Ictalurus punctatus*) and crayfish (*Procambarus*

clarkii). Unpublished study conducted by Bionomic, Inc, Wareham, MA. Sponsored by American Cyanamid Company, Princeton, NJ. Completed September 1973.

MRID 00087718. Roberts S., and Wineholt R.L. 1976. Static 96-hour Toxicity Study of Terbufos in Bluegill Sunfish and Brown Trout: Laboratory No. 6E-3166. (Unpublished study received Nov 24, 1976 under 2749-427; prepared by Cannon Laboratories, Inc., submitted by Aceto Chemical Co., Inc., Flushing, N.Y.; CDL:226951-A).

MRID 00101495. Boudreau, P., A. D. Forbis, and L. Franklin. 1982. Acute Toxicity of COUNTER[®] terbufos to *Daphnia magna*. Unpublished study conducted by Analytical Bio-Chemistry Laboratories, Inc, Columbia Missouri. Report No. 28686. Sponsored by American Cyanimid Company, Princeton, NJ. Completed March 16, 1982.

MRID 00162525. Forbis A., Land C., and Bunch B. 1986. Chronic Toxicity of CL 92, 100 to Daphnia magna Under Flow-Through Test Conditions: ABC Final Rept. #32891. Unpublished study prepared by Analytical Bio-Chemistry Laboratories, Inc. 164 p.

MRID 41475801.Tank S., Brewer L., Cobb G. et al. 1990. Third Year Investigation of the Response of Selected Wildlife Populations to Planting Time Application of Counter 15G Systemic Insecticide-nematicide in an Iowa Corn Agroecosystem: Project Number 107. Unpublished study prepared by The Institute of Wildlife & Environmental Toxicology. 753 p.

MRID 41475802. Rhodes J., and McAllister W. 1990. Early Life Stage Toxicity of [Carbon 14]-AC 92,100 to the Rainbow Trout (Oncorhynchus mykiss) under Flow-through Conditions: Final Report # 37913. Unpublished study prepared by Analytical Bio-Chemistry Laboratories, Inc. 648 p.

U.S. EPA. 1985. Guidelines for derving numerical national water critera for the protection of aquatic organisms and their uses. United States Environmental Protection Agency. Stephan, C.E., D.I. Mount, D.J. Hansen, J.H. Gentile, G.A. Chapman and W.A. Brungs. PB85-227049. National Technical Information Service, Springfield, VA. U.S.

U.S. EPA. 2015. Registration review: Ecological risk assessment for terbufos. Office of Pesticide Programs. Washington, D.C. September 15, 2015.

U.S. EPA. 2024. Draft Comparison of Aquatic Life Protective Values Developed for Pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Clean Water Act (CWA). EPA-820-D-24-002.

1.3 DATA INSUFFICIENT PESTICIDES

1.3.1 Comparison of Aquatic Life Toxicity Values for Methamidophos: Data Sources and Considerations

Data used in the *Draft Comparison of Aquatic Life Protective Values Developed for Pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Clean Water Act (CWA)* (U.S. EPA 2024) for methamidophos Data were gathered by the EPA in 2015 and were also obtained from the OPP registration review document for methamidophos (U.S. EPA 2008).

1.3.1.1 Methamidophos Acute Toxicity Data

Acute data were gathered by the EPA in 2015 and were also obtained from the OPP registration review document for methamidophos (U.S. EPA 2008; See Table 1). The data review identified five LC_{50} s for three species representing three genera that were classified as "quantitative" data.

Four additional 48-hour LC₅₀s for *Daphnia magna* were classified as qualitative. Three LC_{50s} had standard duration (48-hr) and higher purity (>99% a.i. vs. 72-74% a.i. for the quantitative tests), and were classified as qualitative because water chemistry was not reported, control mortality was unknown, and specific test concentrations were not reported. The fourth (27 μ g/L) was classified as qualitative because it was tested at 24°C but included here because it was a standard duration test included in the OPP document. Two additional 96-hour LC₅₀ for bluegill (*Lepomis macrochirus*) were classified as qualitative. One was a static test with insufficient information, and the other used polyethylene liners in test chambers. Both were included in the OPP document. A 96-hour LC₅₀ for the common carp (*Cyprinus carpio*) was classified as qualitative because "chronic impacts observed by 48 hours", but included here because it was used to fulfill an MDR group.

The final acute methamidophos dataset consisted of 12 LC_{50} s for four species across four genera, of which one was an invertebrate species. The invertebrate SMAV and GMAV for (*Daphnia magna*) is listed in Table 2.

OW MDR Group ^a	Genus	Species	LC50/ EC50 (µg/L)	SMAV (µg/L)	GMAV (µg/L)	Reference	Comment
D	Daphnia	magna	26.00			MRID 00041311. Nelson and Roney. 1979	Quantitative, 74% a.i.
D	Daphnia	magna	50.00			MRID 00014110. Wheeler. 1978	Quantitative, 72% a.i.
D	Daphnia	magna	33.66			ECOTOX 99572. Lin et al. 2006.	Qualitative, >99.0 a.i., Basic water chemistry not reported; control mortality unknown; chemical application rates not reported; monitoring of concentrations not reported; test solution not described
D	Daphnia	magna	33.46	32.74	32.74	ECOTOX 99572. Lin et al. 2006.	Qualitative, >99.0 a.i., Basic water chemistry not reported; control mortality unknown; chemical application rates not reported; monitoring of concentrations not reported; test solution not described
D	Daphnia	magna	235.5			ECOTOX 99572. Lin et al. 2006.	Qualitative, >99.0 a.i., Basic water chemistry not reported; control mortality unknown; chemical application rates not reported; monitoring of concentrations not reported; test solution not described
D	Daphnia	magna	27.00			MRID 00014305. Nelson and Burke. 1977.	Qualitative, 74% a.i., Classified by OPP. Test temperature 24°C
А	Oncorhynchus	mykiss	25,000	35 707	35 707	MRID 00041312. Nelson and Roney. 1979.	Quantitative, 74% a.i.
А	Oncorhynchus	mykiss	51,000	33,707	55,707	MRID 00014063. Schoenig. 1968.	Quantitative, 75% a.i.
С	Cyprinus	carpio	68,000	68,000	68,000	MRID 05008361. Further reference information is not available.	Qualitative, 75% a.i., Classified by OPP. Chronic impacts observed by 48 hours
В	Lepomis	macrochirus	34,000			MRID 00041312. Nelson and Roney. 1979.	Quantitative, 74% a.i.
В	Lepomis	macrochirus	45,000	41,287	41,287	MRID 44484402. USEPA. 1977.	Qualitative, 75.4% a.i., Classified by OPP. Static jar study with insufficient environmental information
В	Lepomis	macrochirus	46,000			MRID 00014063. Schoenig. 1968.	Qualitative, 75% a.i., Classified by OPP. Polyethylene liners used in test

Table 1. Acute toxicity data of methamidophos to freshwater aquatic organisms.

a MDR Groups – Freshwater:

A. the family Salmonidae in the class Osteichthyes

B. a second family in the class Osteichthyes, preferably a commercially or recreationally important warmwater species (e.g., bluegill, channel catfish, etc.)

C. a third family in the phylum Chordata (may be in the class Osteichthyes or may be an amphibian, etc.)

D. a planktonic crustacean (e.g., cladoceran, copepod, etc.)

E. a benthic crustacean (e.g., ostracod, isopod, amphipod, crayfish, etc.)

F. an insect (e.g., mayfly, dragonfly, damselfly, stonefly, caddisfly, mosquito, midge, etc.)

G. a family in a phylum other than Arthropoda or Chordata (e.g., Rotifera, Annelida, Mollusca, etc.)

H. a family in any order of insect or any phylum not already represented.

OPP Acute Benchmark Values

The OPP invertebrate acute benchmark is 13 μ g/L, which is ½ of the *Daphnia magna* LC₅₀ of 26 μ g/L.

The OPP fish acute benchmark is 12,500 μ g/L, which is ½ of the *Oncorhynchus mykiss* LC₅₀ of 25,000 μ g/L.

GLI Tier II Acute Value Calculation

The acceptable acute dataset for methamidophos fulfills four MDRs, corresponding to the use of a Secondary Acute Factor (SAF) of 7. Applying the SAF to the lowest, most sensitive GMAV (i.e., 36.06 μ g/L for water flea (*Daphnia magna*), the calculated Secondary Acute Value (SAV) is 5.151 μ g/L. The Secondary Maximum Criterion (SMC), which is calculated as half the SAV, is 2.575 μ g/L.

Detailed calculations for the SMC are shown below:

$$SAV = \frac{\text{Lowest GMAV}}{\text{SAF}}$$
$$SAV = \frac{36.06}{7} = 5.151 \,\mu g/L$$
$$SMC = \frac{\text{SAV}}{2}$$
$$SMC = \frac{5.151}{2} = 2.575 \,\mu g/L$$

Genus-Level Invertebrate-Only Acute HC05

No genus-level invertebrate acute HC_{05} could be calculated following the USEPA (1985) methodology because there was only one invertebrate genus (Table 2).

Table 2. Methamidophos invertebrate SMAV and GMAV (µg/L).

Genus	Species	SMAV	GMAV	GMAV Rank
Daphnia	magna	32.74	32.74	1

Table 3. Summary and comparison of acute values for methamidophos.

Magnitude relative to ALB is the OPP ALB/OW value, the ratio for the OPP value/OW value for each value comparison. A ratio <1 indicates the OPP value is lower than the OW value and a ratio >1 indicates the OPP value is higher than the OW value.

Pesticide	OPP Invertebrate ALB (lowest LC ₅₀ /2) (Year published, species)	OW GLI Tier II value (# of MDRs filled, magnitude relative to ALB)	OW Genus- level Invertebrate- only HC05/2	Notes
Methamidophos	13 μg/L (2016; Daphnia magna)	2.58 μg/L (4 MDRs filled, 5X)	NA (1 genus)	The Tier II value is approximately 20% of the FIFRA ALB despite both being based on the same species. This is because of the Tier II adjustment factor of 7 was applied to this dataset, which satisfied 4/8 MDRs.

Figure 1 shows a genus-level sensitivity distribution for the methamidophos dataset. Major taxonomic groups are delineated by different symbols, and invertebrate genera are identified by name. Lines denoting the OPP acute benchmark values and GLI Tier II calculated value are included.

Figure 1. Methamidophos genus-level acute SD.

Symbols represent GMAVs calculated using all available data from the 2015 EPA literature search, supplemented with the OPP registration review document for methamidophos (U.S. EPA 2008).

1.3.1.2 Methamidophos Chronic Toxicity Data

Chronic data were gathered by the EPA in 2015 and combined with the OPP registration review document for methamidophos (U.S. EPA 2008). The final chronic methamidophos dataset consisted of one NOEC and one LOEC for a single species, which was an invertebrate (Table 4).

OW MDR Group ^a	Genus	Species	NOEC (µg/L)	LOEC (µg/L)	Endpoint	Reference	Comment
D	Daphnia	magna	4.490	5.320	Dry weight, immobility and reproduction	MRID 46554501. Kern et al. 2005	Quantitative / Supplemental

Table 4. Chronic toxicity data of methamidophos to freshwater aquatic organisms.

a MDR Groups - Freshwater:

A. the family Salmonidae in the class Osteichthyes

B. a second family in the class Osteichthyes, preferably a commercially or recreationally important warmwater species (e.g., bluegill, channel catfish, etc.)

C. a third family in the phylum Chordata (may be in the class Osteichthyes or may be an amphibian, etc.)

D. a planktonic crustacean (e.g., cladoceran, copepod, etc.)

E. a benthic crustacean (e.g., ostracod, isopod, amphipod, crayfish, etc.)

F. an insect (e.g., mayfly, dragonfly, damselfly, stonefly, caddisfly, mosquito, midge, etc.)

G. a family in a phylum other than Arthropoda or Chordata (e.g., Rotifera, Annelida, Mollusca, etc.)

H. a family in any order of insect or any phylum not already represented.

OPP Chronic Benchmark Values

The OPP invertebrate chronic benchmark is 4.5 µg/L, which is the NOEC for Daphnia magna.

The OPP fish chronic benchmark is 173.6 μ g/L, which is the estimated NOEC for *Oncorhynchus mykiss*. The *O. mykiss* NOEC was extrapolated by dividing the most sensitive acute 96-h LC50 for rainbow trout (25,000 μ g/L) by 144 (highest rainbow trout ACR for organophosphates).

GLI Tier II Chronic Value Calculation

Paired quantitative chronic and acute toxicity data for methamidophos were available for the water flea, *Daphnia magna*. The paired acute and chronic *D. magna* data enabled the calculation of one ACR. The remaining two ACRs were fulfilled by the default value of 18. The acute and chronic tests were conducted in different laboratories using water of different physical characteristics; therefore, OPP's approach was used to calculate the ACR. OPP's approach involves the use of the NOAEC in the calculations. The calculated Secondary Chronic Value (SCV) for methamidophos is $0.418 \mu g/L$.

Detailed calculations for the SCV are shown below:

$$SACR = Geometric Mean of the ACRs$$
$$SACR = \sqrt[3]{5.791 * 18 * 18} = 12.33$$
$$SCV = \frac{SAV}{SACR}$$
$$SCV = \frac{5.151}{12.33} = 0.418 \,\mu g/L$$

Table 6. Summary and comparison of chronic values for methamidophos.

Magnitude relative to ALB is the OPP ALB/OW value, the ratio for the OPP value/OW value for each value comparison. A ratio <1 indicates the OPP value is lower than the OW value and a ratio >1 indicates the OPP value is higher than the OW value.

Pesticide	OPP Invertebrate ALB (NOAEC) (Year published, species)	OW Tier II value (# of ACRs filled, magnitude relative to ALB)	OW Invertebrate- only HC ₀₅ (# of ACRs filled, magnitude relative to ALB)	Notes
	4.5 μg/L	0.42 μg/L		Two default ACRs of 18
Methamidophos	(2016, Daphnia magna)	(GLI I fier II; I ACR 11X)	NA	used to derive GLI Tier

1.3.1.3 Methamidophos References

ECOTOX 99572. Lin K., Zhou S., Xu C., Liu W. 2006. Enantiomeric Resolution and Biotoxicity of Methamidophos. J Agric Food Chem 54(21): 8134-8138.

MRID 00014063. Schoenig, G. 1968. Report to Chevron Chemical Company, Ortho Division: Four-Day Fish Toxicity Study on Monitor (RE-9006) 75% Technical SX-171:IBT No. A6482. (Unpublished study received Mar 5, 1970 under 0F0956; prepared by Industrial Bio-Test Laboratories, Inc., submitted by Chevron Chemical Co., Richmond, Calif.; CDL:093265-W).

MRID 00014110. Wheeler, R.E. 1978. 48 Hour Acute Static Toxicity of Monitor (SX887) to 1st Stage Nymph Water Fleas (Daphnia magna Straus). (Unpublished study received Sep 15, 1978 under 239-2404; submitted by Chevron Chemical Co., Richmond, Calif.; CDL:235153-A).

MRID 00014305. Nelson, D.L.; Burke, M.A. 1977. Acute Toxicity of ¼(R) Monitor Technical to Daphnia magna: Report No. 54045. (Unpublished study received Mar 27, 1978 under 3125-280; submitted by Mobay Chemical Corp., Agricultural Div., Kansas City, Mo.; CDL: 238096-C.

MRID 00041311. Nelson, D.L.; Roney, D.J. 1979 Acute Toxicity of Monitor¹/₄(R) Technical to Bluegill and Rainbow Trout: Report No. 67739. (Unpublished study received Mar 19, 1980 under 3125-280; submitted by Mobay Chemical Corp., Kansas City, Mo.; CDL:242410-C).

MRID 00041312. Nelson, D.L.; Roney, D.J. 1979 Acute Toxicity of Monitor¹/₄(R) Technical to Bluegill and Rainbow Trout: Report No. 67739. (Unpublished study received Mar 19, 1980 under 3125-280; submitted by Mobay Chemical Corp., Kansas City, Mo.; CDL:242410-C).

MRID 05008361. Chin, Y. N. and K. I. Sudderuddin. 1979. Effect of methamidaphos on the growth rate and esterase activity of the common carp *Cyprinus carpio*. Environmental Pollution 18(3): 213-220.

MRID 44484402. United States Environmental Protection Agency. 1977. Biological Report of Analysis: Bluegill: Monitor 75.39%: Lab Project Number: TSD 1.206. Unpublished study. 6 p.

MRID 46554501. Kern, M.E., and C.V. Lam. 2005. Chronic Toxicity of Methamidophos to the *Daphnia magna* Under Flow-Through Conditions. Unpublished study performed by Bayer Crop

Science, Stilwell, KS. Laboratory Study No. EBTAX016. Study submitted by Bayer CropScience, Research Triangle Park, NC. Study initiated November 3, 2004 and submitted April 6, 2005.

U.S. EPA. 1985. Guidelines for derving numerical national water critera for the protection of aquatic organisms and their uses. United States Environmental Protection Agency. Stephan, C.E., D.I. Mount, D.J. Hansen, J.H. Gentile, G.A. Chapman and W.A. Brungs. PB85-227049. National Technical Information Service, Springfield, VA. U.S.

U.S. EPA. 2008. Registration review. Ecological risk assessment problem formulation for: methamidophos. Office of Pesticide Programs. Washington, D.C. September 29, 2008.

U.S. EPA. 2024. Draft Comparison of Aquatic Life Protective Values Developed for Pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Clean Water Act (CWA). EPA-820-D-24-002.

1.3.2 Comparison of Aquatic Life Toxicity Values for Profenofos: Data Sources and Considerations

Data used in the *Draft Comparison of Aquatic Life Protective Values Developed for Pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Clean Water Act (CWA)* (U.S. EPA 2024) for profenofos were gathered by the EPA in 2015 and were also obtained from the OPP registration review document for profenofos (U.S. EPA 2008).

1.3.2.1 Profenofos Acute Toxicity Data

Acute data were gathered by the EPA in 2015 and were also obtained from the OPP registration review document for profenofos (U.S. EPA 2008; See Table 1). Six LC₅₀s for five species representing five genera that were classified as "quantitative" data. Five LC₅₀s for four invertebrate species across three genera were classified as qualitative and are included here to allow for a sufficient sample size to calculate an invertebrate genus-level HC₀₅.

One 48-hour LC_{50} for *Chironomus plumosus* classified as qualitative because of duration used to fulfill an MDR group. One 48-hour LC_{50} for *Ceriodaphnia dubia* classified as qualitative because water quality characteristics were not reported and potential exposure from feeding may have occurred. Three 24-hour LC_{50} s for two species of *Culex* classified as qualitative because of duration. One 96-hour LC_{50} s for fathead minnow *Pimephales promelas* classified as qualitative because control mortality was not reported and feeding may have occurred. One 96-hour LC_{50} for the Western mosquitofish *Gambusia affinis* classified as qualitative because source water was unknown and control mortality was not reported.

The final acute profenofos dataset consisted of 13 LC₅₀s for 11 species representing 10 genera, of which six were invertebrate species representing five invertebrate genera. Ranked invertebrate GMAVs are listed in Table 2.

OW MDR Group ^a	Genus	Species	LC50/ EC50 (µg/L)	SMAV (µg/L)	GMAV (µg/L)	Reference	Comment
D	Ceriodaphnia	dubia	0.039	0.039	0.04	ECOTOX 158195; Woods et al. 2002	Qualitative, water quality characteristics not reported; potential exposure from feeding; source water type unknown
D	Daphnia	magna	1.400	1 1 4	1.1.4	ECOTOX 6797; Mayer and Ellersieck. 1986	Quantitative
D	Daphnia	magna	0.930	1.14	1.14	MRID 416273-04; Bellantoni. 1990	Quantitative
F	Culex	pipiens pallens	73	73.010		ECOTOX 61915; Lee et al. 1997	Qualitative
F	Culex	quinquefasciatus	5.13	11.26	28.67	ECOTOX 63336; Kasai et al. 1998	Qualitative
F	Culex	quinquefasciatus	24.7	11.20		ECOTOX 63336; Kasai et al. 1998	Qualitative
Е	Gammarus	pseudolimnaeus	0.800	0.800	0.80	ECOTOX 6797; Mayer and Ellersieck. 1986	Quantitative
F	Chironomus	plumosus	1.000	1.000	1.00	ECOTOX 6797; Mayer and Ellersieck. 1986	Qualitative, duration
А	Oncorhynchus	mykiss	23.50	23.50	23.50	ECOTOX 6797; Mayer and Ellersieck. 1986	Quantitative
С	Pimephales	promleas	316.4	316.4	316.4	ECOTOX 68287; Baer et al. 2002	Qualitative, Dechlorinated tap water used; nominal; control mortality not reported; possible feeding during test
С	Gambusia	affinis	633.6	633.6	633.6	ECOTOX 100565; Rao et al. 2006	Qualitative, Control mortality unknown; source water
В	Lepomis	macrochirus	13.50	13.50	13.50	ECOTOX 6797; Mayer and Ellersieck. 1986	Quantitative
С	Ictalurus	punctatus	18.00	18.00	18.00	ECOTOX 6797; Mayer and Ellersieck. 1986	Quantitative

Table 1. Acute toxicity data of profenofos to freshwater aquatic organisms.

a MDR Groups – Freshwater:

A. the family Salmonidae in the class Osteichthyes

B. a second family in the class Osteichthyes, preferably a commercially or recreationally important warmwater species (e.g., bluegill, channel catfish, etc.)

C. a third family in the phylum Chordata (may be in the class Osteichthyes or may be an amphibian, etc.)

D. a planktonic crustacean (e.g., cladoceran, copepod, etc.)

E. a benthic crustacean (e.g., ostracod, isopod, amphipod, crayfish, etc.)

F. an insect (e.g., mayfly, dragonfly, damselfly, stonefly, caddisfly, mosquito, midge, etc.)

G. a family in a phylum other than Arthropoda or Chordata (e.g., Rotifera, Annelida, Mollusca, etc.) H. a family in any order of insect or any phylum not already represented.

OPP Acute Benchmark Values

The OPP invertebrate acute benchmark is 0.465 μ g/L, which is ½ of the lowest *Daphnia magna* LC₅₀ of 0.930 μ g/L.

The OPP fish acute benchmark is 7.05 μ g/L, which is ½ of the *Lepomis macrochirus* LC₅₀ of 14.1 μ g/L as it is reported in the OPP document. The value listed (14.1) is based on nominal concentration and is listed as a measured concentration (13.5) in Table 1.

GLI Tier II Acute Value Calculation

The acceptable acute dataset for profenofos fulfills six of the eight MDRs, corresponding to the use of a SAF of 5.2. Applying the SAF to the lowest, most sensitive GMAV (i.e., 0.800 μ g/L for scud (*Gammarus pseudolimnaeus*), the calculated Secondary Acute Value (SAV) is 0.154 μ g/L. The SMC, which is calculated as half the SAV, is 0.077 μ g/L. Detailed calculations for the SMC are shown below:

$$SAV = \frac{\text{Lowest GMAV}}{\text{SAF}}$$
$$SAV = \frac{0.800}{5.2} = 0.154 \ \mu g/L$$
$$SMC = \frac{\text{SAV}}{2}$$
$$SMC = \frac{0.154}{2} = 0.077 \ \mu g/L$$

Genus-Level Invertebrate-Only Acute HC05

No genus-level invertebrate acute HC_{05} could be calculated following the USEPA (1985) methodology, as there was only two invertebrate genera with quantitative data (Table 2).

Tuble 21 Toleholos invertebrate bitil vs and Gitil vs (µg/L).									
Genus	Species	SMAV	GMAV	GMAV Rank					
Daphnia	magna	1.141	1.141	2					
Gammarus	pseudolimnaeus	0.8000	0.8000	1					

Table 2. Profenofos invertebrate SMAVs and GMAVs (µg/L).

Table 3. Summary and comparison of acute values for profenofos.

Pesticide	OPP Invertebrate ALB (lowest LC50/2) (Year published, species)	OW GLI Tier II value (# of MDRs filled, magnitude relative to ALB)	OW Genus-level Invertebrate- only HC ₀₅ /2	Notes
Profenofos	0.465 μg/L (2008; Daphnia magna)	0.077 μg/L (6 MDRs filled, 6X)	NA (2 genera)	The FIFRA ALB is higher because the GLI Tier II value is based on <i>G. pseudolimnaeus</i> test in the open literature with a lower LC_{50} .

Magnitude relative to ALB is the OPP ALB/OW value, the ratio for the OPP value/OW value for each value comparison. A ratio >1 indicates the OPP value is higher than the OW value.

Figure 1 shows a genus-level sensitivity distribution for the profenofos dataset. Major taxonomic groups are delineated by different symbols, and invertebrate genera are identified by name. Lines denoting the OPP acute benchmark values and GLI Tier II calculated acute value are included.

Figure 1. Profenofos genus-level SD.

Symbols represent GMAVs calculated using all available data from the 2015 EPA literature search, supplemented with the OPP registration review document for profenofos (U.S. EPA 2015).

1.3.2.2 Profenofos Chronic Toxicity Data

Chronic data were gathered by the EPA in 2015 and supplemented with the OPP registration review document for profenofos (U.S. EPA 2015). The final chronic profenofos dataset consisted of two NOECs/LOECS for two species across two genera, of which one was an invertebrate and one was a vertebrate (Table 5).

			-				_	-
Table 5	Chronio	tomotre de	to of m	notonotoa	o freak	watow or	vinatia a	naomiama
Table 5.	C II FOILC	LOXICILY (1)	на ог р	rorenoros i	o rresn	wатег ас	шанс о	ryamsms
I GOIC CI		control y at	the or p			matter at	144410 01	Sections

OW MDR Group ^a	Genus	Species	NOEC (µg/L)	LOEC (µg/L)	Endpoint	Reference	Comment
D	Daphnia	magna	0.2	0.33	Survival of parent and offspring	MRID 000859-64; LeBlanc and Suprenant 1980	Quantitative
В	Pimephales	promelas	2.0	4.4	Not defined	MRID 000859-58; LeBlanc et al. 1979	-

a MDR Groups – Freshwater:

A. the family Salmonidae in the class Osteichthyes

B. a second family in the class Osteichthyes, preferably a commercially or recreationally important warmwater species (e.g., bluegill, channel catfish, etc.)

C. a third family in the phylum Chordata (may be in the class Osteichthyes or may be an amphibian, etc.)

D. a planktonic crustacean (e.g., cladoceran, copepod, etc.)

E. a benthic crustacean (e.g., ostracod, isopod, amphipod, crayfish, etc.)

F. an insect (e.g., mayfly, dragonfly, damselfly, stonefly, caddisfly, mosquito, midge, etc.)

G. a family in a phylum other than Arthropoda or Chordata (e.g., Rotifera, Annelida, Mollusca, etc.)

H. a family in any order of insect or any phylum not already represented.

OPP Chronic Benchmark Values

The OPP invertebrate chronic benchmark is 0.2 µg/L, which is the NOEC for *Daphnia magna*.

The OPP fish chronic benchmark is 2.0 µg/L, which is the NOEC for *Pimephales promelas*.

GLI Tier II Chronic Value Calculation

Quantitative chronic toxicity data and an analogous acute test for profenofos are available for the water flea, *Daphnia magna*, enabling the calculation of one ACR. The default value of 18 was used to fulfill the second and third ACRs. The acute and chronic tests for water flea (*Daphnia magna*) were conducted in different laboratories using water of different physical characteristics; therefore, OPP's approach was used to calculate the ACR, which involves the use of the NOAEC in the calculation. The calculated SCV for profenofos is $0.013 \mu g/L$. Detailed calculations for the SCV are shown below:

SACR = Geometric Mean of the ACRs
SACR =
$$\sqrt[3]{4.650 * 18 * 18} = 11.46$$

SCV = $\frac{SAV}{SACR}$

$$SCV = \frac{0.154}{11.46} = 0.013 \,\mu g/L$$

Table 6. Summary and comparison of chronic values for profenofos.

Magnitude relative to ALB is the OPP ALB/OW value, the ratio for the OPP value/OW value for each value comparison. A ratio <1 indicates the OPP value is lower than the OW value and a ratio >1 indicates the OPP value is higher than the OW value.

Pesticide	OPP Invertebrate ALB (NOAEC) (Year published, species)	OW Tier II value (# of ACRs filled, magnitude relative to ALB)	OW Invertebrate-only HC ₀₅ (# of ACRs filled, magnitude relative to ALB)	Notes
	0.2 μg/L	0.013 μg/L		Two default ACRs of
Profenofos	(2016, <i>Daphnia</i>	(GLI Tier II; 1 ACR,	NA	18 used to derive
	magna)	15X)		GLI Tier II value.

1.3.2.3 Profenofos References

ECOTOX 100565. Rao, J.V., Begum, G., Jakka, N.M., Srikanth, K., and Rao, R.N. 2006. Sublethal Effects of Profenofos on Locomotor Behavior and Gill Architecture of the Mosquito Fish, Gambusia affinis. Drug Chem. Toxicol. (N.Y.) 29(3): 255-267.

ECOTOX 158195. Woods, M., Kumar, A., and Correll, R. 2002. Acute Toxicity of Mixtures of Chlorpyrifos, Profenofos, and Endosulfan to Ceriodaphnia dubia. Bull. Environ. Contam. Toxicol. 68(6): 801-808.

ECOTOX 61915. Lee, D.K., Shin, E.H., and Shim, J.C. 1997. Insecticide Susceptibility of Culex pipiens pallens (Culicidae, Diptera) Larvae in Seoul. Korean J. Appl. Entomol. 27(1): 9-13.

ECOTOX 63336. Kasai, S., Weerashinghe, I.S., and Shono, T. 1998. P450 Monooxygenases are an Important Mechanism of Permethrin Resistance in Culex quinquefasciatus Say Larvae. Arch. Insect Biochem. Physiol. 37(1): 47-56.

ECOTOX 6797. Mayer, F.L.J. and Ellersieck, M.R. 1986. Manual of Acute Toxicity: Interpretation and Data Base for 410 Chemicals and 66 Species of Freshwater Animals. Resour. Publ. No. 160, U.S. Department of Interior, Fish and Wildlife Services, Washington, DC 505 p.

ECOTOX 68287. Baer, K.N., Olivier, K., and Pope, C.N. 2002. Influence of Temperature and Dissolved Oxygen on the Acute Toxicity of Profenofos to Fathead Minnows (Pimephales promelas). Drug Chem. Toxicol. (N.Y.) 25(3): 231-245.

MRID 000859-58. LeBlanc, G.A., Hoberg, J.R., and Dean, J.W. (1979) The Toxicity of CGA-15324 to Fathead Minnow (Pimephales promelas) Eggs and Fry: Report #BW-79-6-490. (Unpublished study received Nov 6, 1981 under 100-598; prepared by EG & G, Bionomics, submitted by Ciba- Geigy Corp., Greensboro, N.C.; CDL:246216-L).

MRID 000859-64. LeBlanc and Surprenant. 1980. Acute toxicity of priority pollutants to water flea (Daphnia magna). Bulletin of Environmental Contamination and Toxicology. Volume 24, Issue 1, pp 684-691.

MRID 416273-04. Bellantoni, D.C. 1990. Profenofos Technical: A 48-Hour Static Acute Toxicity Test with the Cladoceran (Daphnia magna). Laboratory Study No. 108A-106. Prepared by Wildlife International Ltd., Easton, MD. Submitted by Agricultural Division, Ciba-Geigy Corporation, Greensboro.

Mayer, F.L.J. and Ellersieck, M.R. 1986. Manual of Acute Toxicity: Interpretation and Data Base for 410 Chemicals and 66 Species of Freshwater Animals. Resour. Publ. No. 160, U.S. Department of Interior, Fish and Wildlife Services, Washington, DC 505 p.

U.S. EPA. 1985. Guidelines for derving numerical national water critera for the protection of aquatic organisms and their uses. United States Environmental Protection Agency. Stephan, C.E., D.I. Mount, D.J. Hansen, J.H. Gentile, G.A. Chapman and W.A. Brungs. PB85-227049. National Technical Information Service, Springfield, VA. U.S.

U.S. EPA. 2008. Problem formulation for the environmental fate, ecological risk, endangered species, and drinking water assessments in support of the registration review of profenofos. Office of Pesticide Programs. Washington, D.C. March 31, 2008.

U.S. EPA. 2024. Draft Comparison of Aquatic Life Protective Values Developed for Pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Clean Water Act (CWA). EPA-820-D-24-002.

1.3.3 Comparison of Aquatic Life Toxicity Values for Fenpropathrin: Data Sources and Considerations

Data used in the *Draft Comparison of Aquatic Life Protective Values Developed for Pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Clean Water Act (CWA)* (U.S. EPA 2024) for fenpropathrin were gathered by OW in 2015 and combined with data from the OPP document on which the benchmark values are based (U.S. EPA 2010) and information in an OPP (Sayer 2016) memo reviewing studies submitted in support of the fenpropathrin review was also considered below.

1.3.3.1 Fenpropathrin Acute Toxicity Data

Acute fenpropathrin data were gathered by OW in 2015. The OPP document on which the benchmark values are based (U.S. EPA 2010) and an OPP (Sayer 2016) memo reviewing studies submitted in support of the fenpropathrin review were also included in the data gathering (See Table 1). Four LC₅₀s representing four species in four genera were identified and classified as "quantitative" data. A 96-hour LC₅₀ for rainbow trout (*Oncorhynchus mykiss*) was identified and classified as qualitative because it was an 89% a.i. solution but considered acceptable in the OPP document. Two 24-hour LC₅₀s for the Southern house mosquito (*Culex quinquefasciatus*) classified as qualitative for multiple reasons (duration, concentrations used not reported, control not reported, source of organisms unknown, tap water used), but included here to increase the number of invertebrate genera. Additionally, a review of studies submitted in support of a registration review was examined (Sayer 2016), and an acceptable 96-hour LC₅₀ for the amphipod species, *Hyalella azteca*, was added.

The final acute fenpropathrin dataset consisted of eight LC_{50} s for seven species across seven genera, of which three were invertebrate species representing three invertebrate genera. Ranked invertebrate GMAVs are listed in Table 2.

OW MDR Group ^a	Genus	Species	LC50/ EC50 (µg/L)	SMAV (µg/L)	GMAV (µg/L)	Reference	Comment
D	Daphnia	magna	0.530	0.53	0.53	MRID 249939	Quantitative
Е	Hyalella	azteca	0.00305	0.00305	0.00305	MRID 49209502. Bradley. 2013.	
F	Culex	quinquefasciatus	0.27000	0.6149	0.6149	ECOTOX 10971	Qualitative: Duration, tap water, static, concentrations not reported, control mortality not reported (larvae)
F	Culex	quinquefasciatus	1.40000	0.0148	0.6148	ECOTOX 10971	Qualitative: Duration, tap water, static, concentrations not reported, control mortality not reported (pupae)
А	Oncorhynchus	mykiss	2.3	2.30	2.30	MRID 249939	Qualitative, 89% a.i.
В	Pimephales	promelas	2.370	2.37	2.37	MRID 41525901. Dionne and Suprenant. 1990 MRID 42360001. Dionne and Suprenant. 1992	Quantitative
В	Lepomis	macrochirus	2.200	2.20	2.20	MRID 249939 MRID 00127791	Quantitative
В	Ictalurus	punctatus	5.500	5.50	5.50	MRID 249939	Quantitative

Table 1. Acute toxicity data of fenpropathrin to freshwater aquatic organisms.

a MDR Groups – Freshwater:

A. the family Salmonidae in the class Osteichthyes

B. a second family in the class Osteichthyes, preferably a commercially or recreationally important warmwater species (e.g., bluegill, channel catfish, etc.)

C. a third family in the phylum Chordata (may be in the class Osteichthyes or may be an amphibian, etc.)

D. a planktonic crustacean (e.g., cladoceran, copepod, etc.)

E. a benthic crustacean (e.g., ostracod, isopod, amphipod, crayfish, etc.)

F. an insect (e.g., mayfly, dragonfly, damselfly, stonefly, caddisfly, mosquito, midge, etc.)

G. a family in a phylum other than Arthropoda or Chordata (e.g., Rotifera, Annelida, Mollusca, etc.)

H. a family in any order of insect or any phylum not already represented.

OPP Acute Benchmark Values

The OPP invertebrate acute benchmark is 0.0015 μ g/L, which is ½ of the *Hyalella azteca* LC₅₀ of 0.00305 μ g/L.

The OPP fish acute benchmark is 1.1 μ g/L, which is ½ of the *Lepomis macrochirus* LC₅₀ of 2.2 μ g/L.

GLI Tier II Acute Value Calculation

The acceptable acute dataset for fenpropathrin fulfills five of the eight MDRs, corresponding to the use of a SAF of 6.1. Applying the SAF to the lowest, most sensitive GMAV (i.e., $0.00305\mu g/L$ for *Hyalella azteca*), the calculated SAV is $0.0005 \mu g/L$. The SMC, which is calculated as half the SAV, is $0.00025 \mu g/L$.

Detailed calculations for the SMC are shown below:

$$SAV = \frac{\text{Lowest GMAV}}{\text{SAF}}$$
$$SAV = \frac{0.00305}{6.1} = 0.0005 \ \mu g/L$$
$$SMC = \frac{\text{SAV}}{2}$$
$$SMC = \frac{0.0005}{2} = 0.00025 \ \mu g/L$$

Genus-Level Invertebrate Acute HC₀₅

No genus-level invertebrate acute HC_{05} could be calculated using the USEPA (1985) methodology because there were only three invertebrate genera (Table 2).

Genus	Species	SMAV	GMAV	GMAV Rank
Culex	quinquefasciatus	6.148	6.148	3
Daphnia	magna	0.5300	0.5300	2
Hyalella	azteca	0.00305	0.00305	1

Table 2. Fenpropathrin invertebrate SMAVs and GMAVs (µg/L).

Note: The *Culex* GMAV is based on data classified as qualitative that was included to increase the number of invertebrate genera.

Table 3. Summary and comparison of acute values for fenpropathrin.

Magnitude relative to ALB is the OPP ALB/OW value, the ratio for the OPP value/OW value for each value comparison. A ratio <1 indicates the OPP value is lower than the OW value and a ratio >1 indicates the OPP value is higher than the OW value.

Pesticide	OPP Invertebrate ALB (lowest LC ₅₀ /2) (Year published, species)	OW GLI Tier II value (# of MDRs filled, magnitude relative to ALB)	OW Genus- level Invertebrate- only HC ₀₅ /2	Notes
Fenpropathrin	0.0015 µg/L	0.00025 µg/L	NA	The GLI Tier II value is lower than the
(Synthetic	(2021;	(5 MDRs filled,	(2 genera)	FIFRA ALB despite both being based
Pyrethroid)	Hyalella	6X)		on the same species. This is because of
	azteca)			the Tier II adjustment factor of 6.1 was
				applied to this dataset, which satisfied
				5/8 MDRs.

Figure 1 shows a genus-level sensitivity distribution for the fenpropathrin dataset. Major taxonomic groups are delineated by different symbols, and invertebrate genera are identified by name. Lines denoting the OPP acute benchmark values and the GLI Tier II calculated value are included.

Figure 1. Fenpropathrin genus-level acute SD.

Symbols represent GMAVs calculated using all available data from the EPA 2015 literature search supplemented with the OPP registration review document for fenpropathrin (U.S. EPA 2010, Sayer 2016).

1.3.3.2 Fenpropathrin Chronic Toxicity Data

Chronic fenpropathrin data were gathered by OW in 2015 and combined with data from the OPP document on which the benchmark values are based (U.S. EPA 2010) and information in an OPP (Sayer 2016) memo reviewing studies submitted in support of the fenpropathrin review was also considered below.

The final chronic fenpropathrin dataset consisted of five NOECs/LOECS for four species across four genera, of which three were invertebrate genera and one was a vertebrate genus (Table 4).

OW MDR Group ^a	Genus	Species	NOEC (µg/L)	LOEC (µg/L)	Endpoint	Reference	Comment
D	Daphnia	magna	0.064	0.350	100% mortality at 0.350 μg/L; prior to mortality, significant decrease in fecundity (mean young/adult/reproduction day)	MRID 259678	Quantitative
Е	Hyalella	azteca	0.004	0.0101	Survival	MRID 49243301	Acceptable
Е	Hyalella	azteca	< 0.0015	0.0015	Growth (length)	MRID 49368102	Supplemental - qualitative
F	Chironomus	dilutus	0.00578	0.01494	Emergence rate	MRID 49316005	Acceptable
В	Pimephales	promelas	0.06	0.091	Not reported	MRID 41525901	Supplemental

Table 4. Chronic toxicity data of fenpropathrin to freshwater aquatic organisms

a MDR Groups – Freshwater:

A. the family Salmonidae in the class Osteichthyes

B. a second family in the class Osteichthyes, preferably a commercially or recreationally important warmwater species (e.g., bluegill, channel catfish, etc.)

C. a third family in the phylum Chordata (may be in the class Osteichthyes or may be an amphibian, etc.)

D. a planktonic crustacean (e.g., cladoceran, copepod, etc.)

E. a benthic crustacean (e.g., ostracod, isopod, amphipod, crayfish, etc.)

F. an insect (e.g., mayfly, dragonfly, damselfly, stonefly, caddisfly, mosquito, midge, etc.)

G. a family in a phylum other than Arthropoda or Chordata (e.g., Rotifera, Annelida, Mollusca, etc.)

H. a family in any order of insect or any phylum not already represented.

OPP Chronic Benchmark Values

The OPP invertebrate chronic benchmark is $<0.0015 \ \mu g/L$, which is the NOEC for *Hyalella azteca*.

The OPP fish chronic benchmark is $0.6 \mu g/L$, which is the NOEC for *Pimephales promelas*.

GLI Tier II Chronic Value Calculation

The acceptable dataset includes paired quantitative chronic and acute toxicity data for water flea (*Daphnia magna*), allowing for the calculation of one ACR. The GLI Tier II default value of 18 was used for the second and third ACRs. The acute and chronic water flea (*Daphnia magna*) tests were conducted in different laboratories using water of different physical characteristics; therefore, OPP's approach was used to calculate the ACRs. The Office of Pesticide Program's approach involves the use of the lowest (i.e., most sensitive) NOAEC for a given species in the

ACR calculations. The calculated SCV for fenpropathrin is 0.000036 μ g/L. Detailed calculations for the SCV are shown below:

$$SACR = Geometric Mean of the ACRs$$
$$SACR = \sqrt[3]{8.281 * 18 * 18} = 13.90$$
$$SCV = \frac{SAV}{SACR}$$
$$SCV = \frac{0.0005}{13.90} = 0.000036 \,\mu g/L$$

Table 5. Summary and comparison of chronic values for fenpropathrin.

Magnitude relative to ALB is the OPP ALB/OW value, the ratio for the OPP value/OW value for each value comparison. A ratio <1 indicates the OPP value is lower than the OW value and a ratio >1 indicates the OPP value is higher than the OW value.

Pesticide	OPP Invertebrate ALB (NOAEC) (Year published, species)	OW Tier II value (# of ACRs filled, magnitude relative to ALB)	OW Invertebrate- only HC ₀₅ (# of ACRs filled, magnitude relative to ALB)	Notes
Fenpropathrin	<0.0015 µg/L (2021, Hyalella azteca)	0.000036 µg/L (GLI Tier II; 1 ACR, 42X)	NA	Two default ACRs of 18 used to derive GLI Tier II value.

1.3.3.3 Fenpropathrin References

ECOTOX 10971. Mulla, M.S., H.A. Darwazeh, and L. Ede. 1982. Evaluation of New Pyrethroids Against Immature Mosquitoes and Their Effects on Nontarget Organisms. Mosq. News, 42, (4), 583-590.

MRID 00127791. Acute Toxicity of S-3206 TG to Bluegill, Report #BW-81-8-988 by EG & GI Bionomics submitted to Sumitomo Chemical Company, August 1981, Acc #249939.

MRID 249939. Acute Toxicity of S-3206 TG to Bluegill, Report #BW-81-8-988 by EG & GI Bionomics submitted to Sumitomo Chemical Company, August 1981, Acc #249939.

MRID 259678. Forbis, Alan D., David Burgess, and Brenda Bunch. 1985. Chronic Toxicity of (cyclopropyl-l-¹⁴C) fenpropathrin to Daphnia magna Under Plow-through Test Conditions. Conducted at Analytical Bio-Chemistry Laboratories, Inc. Report # 32547. September 9, 1985. Submitted to EPA by Sumitomo Chemical America, Inc. Acc. No. 259678.

MRID 41525901. Dionne, E. and D.C. Suprenant. 1990. The chronic toxicity of Fenpropathrin to the Fathead Minnow (*Pimephales promelas*). Conducted by Springborn Laboratories, Inc., Wareham, Massachusetts. Laboratory Project No. S-2725. Laboratory Study No. 981.0687.6122.122. Submitted by Chevron Chemical Company, Richmond, California.

MRID 42360001. Dionne, E. and D. Suprenant. 1992. The Chronic Toxicity of Fenpropathrin Fathead minnow (*Pimephales promelas*): Supplement to: Lab Project 89-1-2913. Unpublished study prepared by Springborn Labs., Inc. 328 p.

MRID 49209502. Bradley, M.J. 2013. Fenpropathrin TG – Acute Toxicity to Freshwater Amphipods (Hyalella azteca) Under Flow-Through Conditions. Unpublished study performed by Smithers Viscient, Wareham, MA. Laboratory Study No. 13656.6165. Study sponsored by Pyrethroid Working Group, FMC Corporation, Ewing, NJ. Study initiated March 27, 2012 and completed July 30, 2013.

MRID 49243301. Picard, C.R. 2013. Fenpropathrin TG – 42-Day Toxicity Test Exposing Freshwater Amphipods (*Hyalella azteca*) to a Test Substance Applied to Sediment Under Static-Renewal Conditions Following EPA Test Methods. Unpublished study conducted by Smithers Visient, Wareham, MA. Report No 12709.6335. Study sponsored by Valent USA Corporation, Walnut Creek, CA Study completed October 15, 2013.

MRID 49316005. Picard, C.R. Life-Cycle Toxicity Test Exposing Midges (*Chironomus dilutus*) to Fenpropathrin TG Applied to Sediment under Static-Renewal Conditions Following EPA Test Methods. Unpublished study conducted by Smithers Visient, Wareham, MA. Report No 12709.6334. Study sponsored by Valent USA Corporation, Walnut Creek, CA Study completed December 17, 2013.

MRID 49368102. Picard, C.R. 2014. 10-Day Toxicity Test Exposing Freshwater Amphipods (*Hyalella azteca*) to Fenpropathrin Applied to Sediment Under Static-Renewal Conditions Unpublished study conducted by Smithers Visient, Wareham, MA. Report No 13656.6157. Study sponsored by Pyrethroid Working Group, Ewing, NJ. Study completed April 3, 2014.

Sayer, A. 2016. Fenpropathrin: Review of ecological studies submitted in support of registration review. Memorandum to OPP Pesticide Re-evaluation Division. April 9, 2016.

U.S. EPA. 1985. Guidelines for derving numerical national water critera for the protection of aquatic organisms and their uses. United States Environmental Protection Agency. Stephan, C.E., D.I. Mount, D.J. Hansen, J.H. Gentile, G.A. Chapman and W.A. Brungs. PB85-227049. National Technical Information Service, Springfield, VA. U.S.

U.S. EPA. 2010. Environmental fate and ecological risk assessment problem formulation in support of registration review for fenpropathrin. Office of Pesticide Programs. Washington, D.C. June 16, 2010.

U.S. EPA. 2024. Draft Comparison of Aquatic Life Protective Values Developed for Pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Clean Water Act (CWA). EPA-820-D-24-002.

1.3.4 Comparison of Aquatic Life Toxicity Values for Fenbutatin Oxide: Data Sources and Considerations

Data used in the *Draft Comparison of Aquatic Life Protective Values Developed for Pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Clean Water Act (CWA)* (U.S. EPA 2024) for fenbutatin oxide were gathered by OW in 2015 and combined with data obtained from the OPP registration review document for fenbutatin oxide (U.S. EPA 2009).

1.3.4.1 Fenbutatin Oxide Acute Toxicity Data

Acute fenbutatin oxide data were gathered by the EPA in 2015 and were also obtained from the OPP registration review document for fenbutatin oxide (U.S. EPA 2009; See Table 1). Six LC₅₀s representing three species in three genera were identified and classified as "quantitative" data. One 24-hour LC₅₀ for an unidentified insect species in the family *Chironomidae* was classified as qualitative but included here to increase the number of invertebrate genera. The *Chironomidae* test was classified as qualitative because of a non-standard exposure duration, the unidentified species, and the non-definitive (>4,400 µg/L) LC₅₀ test result.

The final acute fenbutatin oxide dataset consisted of seven LC_{50S} for four species across four genera, of which two were invertebrate species representing two invertebrate genera. Ranked invertebrate GMAVs are listed in Table 2.

OW MDR Group ^a	Family	Genus	Species	LC50/ EC50 (µg/L)	SMAV (µg/L)	GMAV (µg/L)	Reference
D	Daphniidae	Daphnia	magna	31.00	31.00	31.00	MRID 40473509. Hutton. 1987
F	Chironomidae	-	-	>4,400	>4,400	>4,400	MRID 47910407. Picard. 2005
А	Salmonidae	Oncorhynchus	mykiss	1.700			MRID 40098001. ECOTOX 6797. Mayer and Ellersieck. 1986.
А	Salmonidae	Oncorhynchus	mykiss	1.900	2.773	2.773	MRID 00113075. Johnson. 1973
А	Salmonidae	Oncorhynchus	mykiss	6.600			MRID 40473506. Hutton. 1987
В	Centrarchidae	Lepomis	macrochirus	4.800	1 800	4 800	MRID 40098001. ECOTOX 6797. Mayer and Ellersieck. 1986
В	Centrarchidae	Lepomis	macrochirus	4.800	4.800	4.800 4.800	MRID 00113076. Johnson and Jones. 1971

Table 1. Acute toxicity data of fenbutatin oxide to freshwater aquatic organisms.

a MDR Groups – Freshwater:

A. the family Salmonidae in the class Osteichthyes

B. a second family in the class Osteichthyes, preferably a commercially or recreationally important warmwater species (e.g., bluegill, channel catfish, etc.)

C. a third family in the phylum Chordata (may be in the class Osteichthyes or may be an amphibian, etc.)

D. a planktonic crustacean (e.g., cladoceran, copepod, etc.)

E. a benthic crustacean (e.g., ostracod, isopod, amphipod, crayfish, etc.)

F. an insect (e.g., mayfly, dragonfly, damselfly, stonefly, caddisfly, mosquito, midge, etc.)

G. a family in a phylum other than Arthropoda or Chordata (e.g., Rotifera, Annelida, Mollusca, etc.)

H. a family in any order of insect or any phylum not already represented.
OPP Acute Benchmark Values

The OPP invertebrate acute benchmark is 15.5 μ g/L, which is ½ of the *Daphnia magna* LC₅₀ of 31.00 μ g/L.

The OPP fish acute benchmark is 0.85 μ g/L, which is ½ of the *Oncorhynchus mykiss* LC₅₀s of 1.7 μ g/L.

GLI Tier II Acute Value Calculation

The acceptable acute dataset for fenbutatin oxide fulfills three of the eight MDRs, corresponding to the use of a SAF of 8. Applying the SAF to the lowest, most sensitive GMAV (i.e., 2.773 μ g/L for rainbow trout (*Oncorhynchus mykiss*), the calculated SAV is 0.347 μ g/L. The SMC, which is calculated as half the SAV, is 0.173 μ g/L.

Detailed calculations for the SMC are shown below:

$$SAV = \frac{\text{Lowest GMAV}}{\text{SAF}}$$
$$SAV = \frac{2.773}{8} = 0.347 \ \mu g/L$$
$$SMC = \frac{\text{SAV}}{2}$$
$$SMC = \frac{0.347}{2} = 0.173 \ \mu g/L$$

Genus-Level Invertebrate-only Acute HC₀₅

No genus-level invertebrate acute HC_{05} could be calculated following the USEPA (1985) methodology because there were only two invertebrate genera (Table 2).

Table 2. Fenbutatin oxide invertebrate SMAVs and GMAVs (µg/L).

Genus	Species	SMAV	GMAV	Invertebrate GMAV Rank
Family Chironomidae		>4,400	>4,400	2
Daphnia	magna	31.00	31.00	1

Note: The Family Chironomidae GMAVs is based on data classified as qualitative that was included to increase the number of invertebrate genera.

Table 3. Summary and comparison of acute values for fenbutatin oxide.

Magnitude relative to ALB is the OPP ALB/OW value, the ratio for the OPP value/OW value for each value comparison. A ratio <1 indicates the OPP value is lower than the OW value and a ratio >1 indicates the OPP value is higher than the OW value.

Pesticide	OPP Most Sensitive ALB (lowest LC ₅₀ /2) (Year published, species)	OW GLI Tier II value (# of MDRs filled, magnitude relative to ALB)	OW Genus-level Invertebrate-only HC ₀₅ /2	
Fenbutatin Oxide (Organotin Acaricide)	0.85 µg/L (2009; Oncorhynchus mykiss)	0.173 μg/L (3 MDRs filled, 4.9X)	NA (1 genus)	

Figure 1 shows a genus-level sensitivity distribution for the fenbutatin oxide dataset. Major taxonomic groups are delineated by different symbols, and invertebrate genera are identified by name. Lines denoting the OPP acute benchmark values and GLI Tier II calculated acute value are included.

Figure 1. Fenbutatin oxide genus-level acute SD.

Symbols represent GMAVs calculated using all available data from the 2015 EPA literature search, supplemented with the OPP registration review document for fenbutatin oxide (U.S. EPA 2015).

1.3.4.2 Fenbutatin Oxide Chronic Toxicity Data

Data were gathered by the EPA in 2015, supplemented with the OPP registration review document for fenbutatin oxide (U.S. EPA 2015). The final chronic fenbutatin oxide dataset consisted of two NOECs/LOECS for two species across two genera, of which one was an invertebrate and one was a vertebrate (Table 4).

OW MDR Group ^a	Genus	Species	NOEC (µg/L)	LOEC (µg/L)	Endpoint	Reference	Comment
D	Daphnia	magna	16.00	39.00	Reduced growth and percent survival in adults and total number of young	MRID 40525901; Hutton 1988	Quantitative
А	Oncorhynchus	mykiss	0.310	0.610	Reduced larval survival and growth	MRID 40473512; Hutton 1987	Quantitative

Table 4. Chronic toxicity data of fenbutatin oxide to freshwater aquatic organisms.

a MDR Groups - Freshwater:

A. the family Salmonidae in the class Osteichthyes

B. a second family in the class Osteichthyes, preferably a commercially or recreationally important warmwater species (e.g., bluegill, channel catfish, etc.)

C. a third family in the phylum Chordata (may be in the class Osteichthyes or may be an amphibian, etc.)

D. a planktonic crustacean (e.g., cladoceran, copepod, etc.)

E. a benthic crustacean (e.g., ostracod, isopod, amphipod, crayfish, etc.)

F. an insect (e.g., mayfly, dragonfly, damselfly, stonefly, caddisfly, mosquito, midge, etc.)

G. a family in a phylum other than Arthropoda or Chordata (e.g., Rotifera, Annelida, Mollusca, etc.)

H. a family in any order of insect or any phylum not already represented.

OPP Chronic Benchmark Values

The OPP invertebrate chronic benchmark is 16 µg/L, which is the NOEC for *Daphnia magna*.

The OPP fish chronic benchmark is 0.31 µg/L, which is the NOEC for Oncorhynchus mykiss.

GLI Tier II Chronic Value Calculation

The dataset of quantitative chronic toxicity data for fenbutatin oxide includes data for rainbow trout (*Oncorhynchus mykiss*) and water flea (*Daphnia magna*). Analogous quantitative acute tests are available for both species; therefore, two ACRs were calculated. The default value of 18 was used for the third ACR. The acute and chronic tests were conducted in different laboratories using water of different physical characteristics; therefore OPP's approach was used to calculate the ACRs. OPP's approach involves the use of the lowest (i.e., most sensitive) NOAEC for a given species in the ACR calculations. The calculated SCV for fenbutatin oxide is 0.060 μ g/L. Detailed calculations for the SCV are shown below:

SACR = Geometric Mean of the ACRs

 $SACR = \sqrt[3]{1.938 * 5.484 * 18} = 5.761$

$$SCV = \frac{SAV}{SACR}$$
$$SCV = \frac{0.347}{5.761} = 0.060 \ \mu g/L$$

Table 5. Summary and comparison of chronic values for fenbutatin oxide.

Magnitude relative to ALB is the OPP ALB/OW value, the ratio for the OPP value/OW value for each value comparison. A ratio <1 indicates the OPP value is lower than the OW value and a ratio >1 indicates the OPP value is higher than the OW value.

Pesticide	OPP Invertebrate ALB (NOAEC) (Year published, species)	OW Tier II value (# of ACRs filled, magnitude relative to ALB)	OW Invertebrate- only HC ₀₅ (# of ACRs filled, magnitude relative to ALB)	Notes
Fenbutatin Oxide	0.31 μ g/L (2009, <i>Oncorhynchus</i> <i>mykiss</i>). Note the vertebrate ALB is lower than the invertebrate ALB (16 μ g/L)	0.06 μg/L (GLI Tier II; 2 ACRs, 5.1X)	NA	One default ACR of 18 used to derive GLI Tier II value.

1.3.4.3 Fenbutatin Oxide References

MRID 00113075. Johnson, W. 1973. Acute toxicity of Technical SD14114 to Rainbow Trout (*Oncorhynchus mykiss* formerly *Salmo gairdneri*). U.S. Fish and Wildlife Service, Fish Pesticide Research Laboratory; unpublished study. Raw data relayed from W. W. Johnson (USFWS) to Shell Chemical Com, San Ramon, CA.

MRID 00113076. Johnson, W.; Jones, T. 1971. Static Acute Toxicity of SD 14114 to Bluegill. U.S. Fish and Wildlife Service, Fish-pesticide Research Laboratory; unpublished study; CDL:098036-I.

MRID 40098001. ECOTOX 6797. Mayer, F. L. J. and Ellersieck, M. R. 1986. Manual of Acute Toxicity: Interpretation and Data Base for 410 Chemicals and 66 Species of Freshwater Animals. Resour. Publ. No. 160, U.S. Department of Interior, Fish and Wildlife Services, Washington, DC 505 p.

MRID 40473506. Hutton, D. 1987. Static Acute 96-hour LC50 of Technical Vendex to Rainbow Trout (Salmo gairdneri): Haskell Laboratory Report No. 327-87: MR 4581-472. Unpublished study prepared by Haskell Laboratory for Toxicology and Industrial Medicine. 10 p.

MRID 40473509. Hutton, D. 1987. Daphnia magna Static Acute 48-hour EC50 of Technical Vendex: Haskell Laboratory Report No. 316-87: MR 4581501. Unpublished study prepared by Dupont Haskell Laboratory for Toxicology and Industrial Medicine. 10 p.

MRID 40473512. Hutton, D. 1987. Early Life Stage Toxicity of Technical Vendex to Rainbow Trout (Salmo gairdneri): Haskell Laboratory Report No. 460-87: MR 4581-472. Unpublished study prepared by Dupont Haskell Laboratory for Toxicology and Industrial Medicine. 19 p.

MRID 40525901. Hutton, D. 1988. Chronic Toxicity of Technical Vendex to Daphnia magna: Rept. No. 94-88. Unpublished study prepared by E.I. du Pont de Nemours and Co., Inc. 20 p.

MRID 47910407. Picard, C. R. 2009. Fenbutatin-oxide - 10-Day Toxicity Test Exposing Midge *(Chironomus dilutus)* to a Test Substance Applied to Sediment Under Static-Renewal [Intermittent Flow] Conditions Following OCSPP Draft Guideline 850.1735. Unpublished study conducted by Springborn Smithers Laboratory, Wareham, MA. Report No. 13845.6122. Sponsored by United Phosphorus, King of Prussia, PA.

U.S. EPA. 1985. Guidelines for derving numerical national water critera for the protection of aquatic organisms and their uses. United States Environmental Protection Agency. Stephan, C.E., D.I. Mount, D.J. Hansen, J.H. Gentile, G.A. Chapman and W.A. Brungs. PB85-227049. National Technical Information Service, Springfield, VA. U.S.

U.S. EPA. 2009. Problem formulation for the environmental fate, ecological risk, endangered species, and drinking water assessments in support of the registration review of fenbutatin-oxide. Office of Pesticide Programs. Washington, D.C. September 28, 2009.

U.S. EPA. 2024. Draft Comparison of Aquatic Life Protective Values Developed for Pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Clean Water Act (CWA). EPA-820-D-24-002.

1.3.5 Comparison of Aquatic Life Toxicity Values for Methoxyfenozide: Data Sources and Considerations

Data used in the *Draft Comparison of Aquatic Life Protective Values Developed for Pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Clean Water Act (CWA)* (U.S. EPA 2024) for methoxyfenozide were gathered by OW in 2015 and supplemented with additional values described in the OPP document on which the benchmark values are based (U.S. EPA 2013).

1.3.5.1 Methoxyfenozide Acute Toxicity Data

Data were gathered by the OW in 2015 and supplemented with additional values described in the OPP document on which the benchmark values are based (U.S. EPA 2013). One LC_{50} for *Daphnia magna* determined to be "quantitative" data. Two 96-hour LC_{50} s for *Oncorhynchus mykiss* and *Lepomis macrochirus* were classified as qualitative because they were greater than toxicity values used to fulfill MDR groups, but otherwise considered acceptable. A 120-hour LC_{50} for the mosquito *Anophales gambiae* was classified as qualitative because of duration, uncharacterized source water, feeding during the test, and lack of replicates, but was included in order to increase the number of invertebrate genera.

The final acute methoxyfenozide dataset consisted of four LC_{50} s for four species representing four genera, of which two were invertebrate species representing two invertebrate genera (Table 1). The invertebrate GMAVs are listed in Table 2.

OW MDR Group ^a	Genus	Species	LC50/ EC50 (µg/L)	SMAV (µg/L)	GMAV (µg/L)	Reference	Comment
D	Daphnia	magna	3,700	3,700	3,700	MRID 44144411; Holmes and Swigert. 1993	Quantitative
F	Anaphales	gambiae	248	247.70	247.70	ECOTOX 165535; Morou et al. 2013	Qualitative: Duration; fed during experiment; tests conducted with unknown water type in plastic cups; no replicates.
А	Oncorhynchus	mykiss	>4,200	>4,200	>4,200	MRID 44144410; Graves and Swigert. 1995	Qualitative, greater than endpoint
В	Lepomis	macrochirus	>4,300	>4,300	>4,300	MRID 44144409; Graves and Swigert. 1995	Qualitative, greater than endpoint

Table 1. Acute toxicity data of methoxyfenozide to freshwater aquatic organisms.

a MDR Groups – Freshwater:

A. the family Salmonidae in the class Osteichthyes

B. a second family in the class Osteichthyes, preferably a commercially or recreationally important warmwater species (e.g., bluegill, channel catfish, etc.)

C. a third family in the phylum Chordata (may be in the class Osteichthyes or may be an amphibian, etc.)

D. a planktonic crustacean (e.g., cladoceran, copepod, etc.)

E. a benthic crustacean (e.g., ostracod, isopod, amphipod, crayfish, etc.)

F. an insect (e.g., mayfly, dragonfly, damselfly, stonefly, caddisfly, mosquito, midge, etc.)

G. a family in a phylum other than Arthropoda or Chordata (e.g., Rotifera, Annelida, Mollusca, etc.)

H. a family in any order of insect or any phylum not already represented.

OPP Acute Benchmark Values

The OPP invertebrate acute benchmark is 28.5 μ g/L, which is ½ of the calculated (estimated) *Chironomus riparius* acute test value of 57 μ g/L. This acute value for *C. riparius* was calculated by multiplying the acute to chronic ratio from studies with *Daphnia magna* by the NOAEC for *Chironomus riparius* (Described in a footnote to Table 4.1 of U.S. EPA 2013). Briefly, The ACR for *D. magna* is 18.5. The *C. riparius* NOAEC (3.1 μ g/L) served as the basis for the OPP invertebrate chronic benchmark and is used in the acute value calculation. The estimated/calculated acute value for *C. riparius* is 57 μ g/L (i.e., 3.1 x 18.5). The OPP fish acute benchmark is >2,100 μ g/L, which is ½ of the *Oncorhynchus mykiss* LC₅₀ of >4,200 μ g/L.

GLI Tier II Acute Value Calculation

The acceptable acute dataset for methoxyfenozide fulfills three of the eight MDRs, corresponding to the use of a Secondary Acute Factor (SAF) of 8. Applying the SAF to the lowest, most sensitive GMAV (i.e., the only GMAV available, 3,700 μ g/L for water flea (*Daphnia magna*)), the calculated Secondary Acute Value (SAV) is 462.5 μ g/L. The Secondary Maximum Criterion (SMC), which is calculated as half the SAV, is 231.3 μ g/L. Detailed calculations for the SMC are shown below:

$$SAV = \frac{\text{Lowest GMAV}}{\text{SAF}}$$
$$SAV = \frac{3,700}{8} = 462.5 \ \mu g/L$$
$$SMC = \frac{\text{SAV}}{2}$$
$$SMC = \frac{462.5}{2} = 231.3 \ \mu g/L$$

Genus-Level Invertebrate Acute HC05

No genus-level invertebrate Acute HC_{05} could be calculated following USEPA (1985) methodology because there were only two invertebrate genera (Table 2).

Table 2. Methoxyf	enozide invertebrate	SMAVs and	GMAVs (µg/L)
-------------------	----------------------	------------------	--------------

Genus	Species	SMAV	GMAV	GMAV Rank
Daphnia	magna	3,700	3,700	2
Anaphales	gambiae	247.7	247.7	1

Note: The *A. gambiae* GMAV is based on data classified as qualitative that was included to increase the number of invertebrate genera.

Table 3. Summary and comparison of acute values for methoxyfenozide.

Magnitude relative to ALB is the OPP ALB/OW value, the ratio for the OPP value/OW value for each value comparison. A ratio <1 indicates the OPP value is lower than the OW value and a ratio >1 indicates the OPP value is higher than the OW value.

Pesticide	OPP Invertebrate ALB (lowest LC ₅₀ /2) (Year published, species)	OW GLI Tier II value (# of MDRs filled, magnitude relative to ALB)	OW Genus Level Invertebrate- only HC ₀₅ /2	Notes
Methoxyfenozide (Insect Growth Regulator; Diacylhydrazine)	28.5 μg/L (2013; <i>Chironomus</i> <i>riparius</i>)	231.3 μg/L (3 MDRs filled, 0.0043X)	NA (2 genera)	FIFRA ALB value was calculated by multiplying the acute-to-chronic ratio from studies with <i>D. magna</i> by the NOAEC for <i>C. riparius</i> . The <i>C.</i> <i>riparius</i> NOAEC ($3.1 \mu g/L$) serves as the basis for the FIFRA ALB chronic benchmark.
				The Tier II value is approximately 10 times larger than the FIFRA ALB because it is based on the GMAV for <i>Daphnia</i> , which is 74 times larger than the calculated test value for <i>C. riparius</i> (57 µg/L).

Figure 1 shows a genus-level sensitivity distribution for the methoxyfenozide dataset. Major taxonomic groups are delineated by different symbols, and invertebrate genera are identified by name. Lines denoting the OPP acute benchmark values and the GLI Tier II calculated value are included.

Figure 1. Methoxyfenozide genus-level acute SD.

Symbols represent GMAVs calculated using all available data from the 2015 EPA literature search, supplemented with the OPP registration review for methoxyfenozide (U.S. EPA 2013).

1.3.5.2 Methoxyfenozide Chronic Toxicity Data

Chronic methoxyfenozide data were gathered by the OW in 2015 and supplemented with additional values described in the OPP document on which the benchmark values are based (U.S. EPA 2013). The final chronic methoxyfenozide dataset consisted of three NOECs/LOECS for three species across three genera, of which two were invertebrate genera and one was a vertebrate genus (Table 4).

OW MDR Group ^a	Genus	Species	NOEC (µg/L)	LOEC (µg/L)	Endpoint	Reference	Comment
D	Daphnia	magna	200.0	390.0	Survival	MRID 446177-14; Zelinka et al. 1993	Quantitative
F	Chironomus	riparius	3.1	6.3	Delayed emergence and development	MRID 450328-01; Kolk 2000	Supplemental (non-guideline)
В	Pimephales	promelas	530	1,000	Survival	MRID 446177-16; Rhodes and Hurshman 1998	Acceptable

Table 4. Chronic toxicity data of methoxyfenozide to freshwater aquatic organisms

a MDR Groups - Freshwater:

A. the family Salmonidae in the class Osteichthyes

B. a second family in the class Osteichthyes, preferably a commercially or recreationally important warmwater species (e.g., bluegill, channel catfish, etc.)

C. a third family in the phylum Chordata (may be in the class Osteichthyes or may be an amphibian, etc.)

D. a planktonic crustacean (e.g., cladoceran, copepod, etc.)

E. a benthic crustacean (e.g., ostracod, isopod, amphipod, crayfish, etc.)

F. an insect (e.g., mayfly, dragonfly, damselfly, stonefly, caddisfly, mosquito, midge, etc.)

G. a family in a phylum other than Arthropoda or Chordata (e.g., Rotifera, Annelida, Mollusca, etc.)

H. a family in any order of insect or any phylum not already represented.

OPP Chronic Benchmark Values

The OPP invertebrate chronic benchmark is 3.1 μ g/L, which is the NOEC for *Chironomus riparius*.

The OPP fish chronic benchmark is 530 µg/L, which is the NOEC for *Pimephales promelas*.

GLI Tier II Chronic Value Calculation

Paired quantitative chronic and acute toxicity data for methoxyfenozide were available for water flea (*Daphnia magna*), allowing for the calculation of one ACR. The remaining two ACRs were fulfilled by the default value of 18. The acute and chronic tests were conducted in different laboratories using water of different physical characteristics; therefore, OPP's approach was used to calculate the ACR. OPP's approach involves the use of the NOAEC) in the calculations. The calculated SCV for methoxyfenozide is 25.46 µg/L.

Detailed calculations for the SCV are shown below:

SACR = Geometric Mean of the ACRs SACR = $\sqrt[3]{18.50 * 18 * 18} = 18.17$

$$SCV = \frac{SAV}{SACR}$$
$$SCV = \frac{462.5}{18.17} = 25.46 \,\mu g/L$$

Table 5. Summary and comparison of chronic values for methoxyfenozide

Magnitude relative to ALB is the OPP ALB/OW value, the ratio for the OPP value/OW value for each value comparison. A ratio <1 indicates the OPP value is lower than the OW value.

Pesticide	OPP Invertebrate ALB (NOAEC) (Year published, species)	OPP Invertebrate ALB (NOAEC) (Year published, species) OW Tier II value (# of ACRs filled, magnitude relative to ALB)		Notes
Methoxyfenozide	3.1 µg/L (2019, Chironomus riparius)	25.5 μg/L (GLI Tier II; 1 ACR, 0.25X)	NA	Two default ACRs of 18 used to derive GLI Tier II value.

1.3.5.3 Methoxyfenozide References

ECOTOX 165535. Morou, E., M. Lirakis, N. Pavlidi, M. Zotti, Y. Nakagawa, G. Smagghe, J. Vontas, and L. Swevers. 2013. A New Dibenzoylhydrazine with Insecticidal Activity Against Anopheles Mosquito Larvae. Pest Manag. Sci.69(7): 827-833.

MRID 44144409. Graves, W., and Swigert, J. 1995. RH-112,485 Technical: A 96-Hour Flow-Through Acute Toxicity Test with the Bluegill (Lepomis macrochirus): Final Report: Lab Project Number: 129A-125: 95RC-0026: 129/013195/BLU-96H2/CHP83. Unpublished study prepared byWildlife International Ltd. 90 p.

MRID 44144410. Graves, W., and Swigert, J. 1995. RH-112,485 Technical: A 96-Hour Flow-Through Acute Toxicity Test with the Rainbow Trout (Oncorhynchus mykiss): Final Report: Lab Project Number: 129A-124: 95RC-0025: 129/013195/RBT-96H2/CHP84. Unpublished study prepared by Wildlife International Ltd. 90 p.

MRID 44144411. Holmes, C., and Swigert, J. 1993. RH-112,485 Technical: A 48-Hour Flow-Through Acute Toxicity Test with the Cladoceran (Daphnia magna): Final Report: Lab Project Number: 129A- 112B: 92RC-0028: 129/032692/DAP-48H2/CHP38. Unpublished study prepared by Wildlife International Ltd. 93 p.

MRID 446177-14. Zelinka, E. Holmes, C., Martin, K. et al. 1993. RH-112,485 Technical: A Flow-Through Life-Cycle Toxicity Test With the Cladoceran (Daphnia magna): Amended Final Report: Lab Project Number: 129A-113B: 92RC-0029: 129/032692/DAP-LC2/CHP38. Unpublished study prepared by Wildlife International Ltd. 108 p.

MRID 446177-16. Rhodes, J., and Hurshman, B. 1998. Full Life-Cycle Toxicity of RH-112,485 Technical to the Fathead Minnow (Pimephales promelas) Under Flow-Through Conditions: Lab Project Number: 43701: 96RC-0184: 96P-184. Unpublished study prepared by ABC Laboratories. 1246 p.

MRID 450328-01. Kolk, J. 2000 RH-2485 Technical: Chronic Effects on Midge Larvae (Chironomus riparius)in Water/Sediment System: Final Report: Lab Project Number: 99P-001: 1007.051.173: 99RC-0001. Unpublished study prepared by Springborn Labs. (Europe) AG. 119 p.

U.S. EPA. 1985. Guidelines for derving numerical national water critera for the protection of aquatic organisms and their uses. United States Environmental Protection Agency. Stephan, C.E., D.I. Mount, D.J. Hansen, J.H. Gentile, G.A. Chapman and W.A. Brungs. PB85-227049. National Technical Information Service, Springfield, VA. U.S.

U.S. EPA. 2013. Registration review. Preliminary problem formulation for environmental fate, ecological risk, endangered species, and human health drinking water exposure assessments for methoxyfenozide. Office of Pesticide Programs. Washington, D.C. April 25, 2013.

U.S. EPA. 2024. Draft Comparison of Aquatic Life Protective Values Developed for Pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Clean Water Act (CWA). EPA-820-D-24-002.

1.3.6 Comparison of Aquatic Life Toxicity Values for Norflurazon: Data Sources and Considerations

Data used in the *Draft Comparison of Aquatic Life Protective Values Developed for Pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Clean Water Act (CWA)* (U.S. EPA 2024) for norflurazon were gathered by OW in 2015. Additionally, three OPP documents (U.S. EPA 2008, 2012, 2017) on which the benchmark values are based also provided data. The OPP invertebrate and fish benchmark values were the same in all three documents.

1.3.6.1 Norflurazon Acute Toxicity Data

Acute norflurazon data were gathered by OW in 2015. Additionally, three OPP documents (U.S. EPA 2008, 2012, 2017) on which the benchmark values are based also provided data. (See Table 1.) The OPP invertebrate and fish benchmark values were the same in all three documents examined. Two LC₅₀s were classified as "quantitative" data and one 96-hour LC₅₀ for *Daphnia magna* was classified as qualitative because of its duration and because it was a greater than value. This test was included to fulfill a MDR group, and because it serves as the basis for the OPP invertebrate benchmark value.

The final acute norflurazon dataset consisted of three LC_{50} s for three species representing three genera, of which one was an invertebrate species. The invertebrate GMAV for *Daphnia* is listed in Table 2.

OW MDR Group ^a	Genus	Species	LC50/ EC50 (µg/L)	SMAV (µg/L)	GMAV (µg/L)	Reference	Comment
П	Danhnia	magna	>15 000	>15 000	>15 000	MRID 00035709;	Qualitative, greater than
Dapinia	Dapinna	magna	>15,000	>15,000	>15,000	Vilkas and Browne. 1980	value, duration
А	Oncorhynchus	mykiss	8,100	8,100	8,100	MRID 00087863; Stoll et al. 1981	Quantitative
В	Lepomis	macrochirus	16,300	16,300	16,300	MRID 0087862; Stoll et al. 1981	Quantitative

Table 1. Acute toxicity data of norflurazon to freshwater aquatic organisms.

a MDR Groups – Freshwater:

A. the family Salmonidae in the class Osteichthyes

- B. a second family in the class Osteichthyes, preferably a commercially or recreationally important warmwater species (e.g., bluegill, channel catfish, etc.)
- C. a third family in the phylum Chordata (may be in the class Osteichthyes or may be an amphibian, etc.)

D. a planktonic crustacean (e.g., cladoceran, copepod, etc.)

- E. a benthic crustacean (e.g., ostracod, isopod, amphipod, crayfish, etc.)
- F. an insect (e.g., mayfly, dragonfly, damselfly, stonefly, caddisfly, mosquito, midge, etc.)
- G. a family in a phylum other than Arthropoda or Chordata (e.g., Rotifera, Annelida, Mollusca, etc.)

H. a family in any order of insect or any phylum not already represented.

OPP Acute Benchmark Values

The OPP invertebrate acute benchmark is >7,500 μ g/L, which is ½ of the *Daphnia magna* test value of >15,000 μ g/L.

The OPP fish acute benchmark is 4,050 μ g/L, which is ½ of the *Oncorhynchus mykiss* LC₅₀ of 8,100 μ g/L.

GLI Tier II Acute Value Calculation

The acceptable acute dataset for norflurazon fulfills three MDRs, corresponding to the use of a SAF of 8. Applying the SAF to the lowest, most sensitive GMAV (i.e., 8,100 μ g/L for rainbow trout (*Oncorhynchus mykiss*), the calculated SAV is 1,012.5 μ g/L. The SMC, which is calculated as half the SAV, is 506.3 μ g/L. Detailed calculations for the SMC are shown below:

$$SAV = \frac{\text{Lowest GMAV}}{\text{SAF}}$$
$$SAV = \frac{8,100}{8} = 1,012.5 \ \mu g/L$$
$$SMC = \frac{\text{SAV}}{2}$$
$$SMC = \frac{1,012.5}{2} = 506.3 \ \mu g/L$$

Genus-Level Invertebrate-only Acute HC₀₅

No genus-level invertebrate acute HC_{05} could be calculated using the USEPA (1985) methodology because there was only one invertebrate genus (Table 2).

Table 2. Norfluraz	on invertebrate SMA	AV and G	GMAV (ug/L).

Genus	Species	SMAV	GMAV	GMAV Rank
Daphnia	magna	>15,000	>15,000	1

Table 3. Summary and comparison of acute values for norflurazon. Magnitude relative to ALB is the OPP ALB/OW value, the ratio for the OPP value/OW value for each value comparison. A ratio >1 indicates the OPP value is higher than the OW value.

Pesticide	OPP Most Sensitive ALB (lowest LC50/2) (Year published, species)	OW GLI Tier II value (# of MDRs filled, magnitude relative to ALB)	OW Genus- level Invertebrate- only HC ₀₅ /2	Notes
Norflurazon (Pyridazine Herbicide)	4,050 μg/L (2023; Oncorhynchus mykiss)	506.3 μg/L 3 MDRs filled, 8X)	NA (1 genus)	The lowest OPP ALB is for nonvascular plants (6.03 μ g/L), but the GLI Tier II value is based on <i>O. mykiss</i> so the vertebrate ALB is used in this comparison.

Figure 1 shows a genus-level sensitivity distribution for the norflurazon dataset. Major taxonomic groups are delineated by different symbols, and invertebrate genera are identified by

name. Lines denoting the OPP acute benchmark values and GLI Tier II calculated values are included.

Figure 1. Norflurazon genus-level SD.

Symbols represent GMAVs calculated using all available data from the 2015 EPA literature search, supplemented the OPP registration review document for norflurazon (U.S. EPA 2017).

1.3.6.2 Norflurazon Chronic Toxicity Data

Chronic norflurazon data were gathered by OW in 2015. Additionally, three OPP documents (U.S. EPA 2008, 2012, 2017) on which the benchmark values are based also provided data.

The final chronic norflurazon dataset consisted of three NOECs/LOECS for three species across three genera, of which one was an invertebrate genus and two were vertebrate genera (Table 4).

OW MDR Group ^a	Genus	Species	NOEC (µg/L)	LOEC (µg/L)	Endpoint	Reference
D	Daphnia	magna	1,000	2,600	Reduced number of offspring	MRID 00118049; LeBlanc 1982
А	Oncorhynchus	mykiss	770	1,500	Growth	MRID 0018048; LeBlanc 1982
В	Pimephales	promelas	1,100	2,100	Growth	MRID 00118047; LeBlanc 1982

 Table 4. Chronic toxicity data of norflurazon to freshwater aquatic organisms

a MDR Groups - Freshwater:

A. the family Salmonidae in the class Osteichthyes

B. a second family in the class Osteichthyes, preferably a commercially or recreationally important warmwater species (e.g., bluegill, channel catfish, etc.)

C. a third family in the phylum Chordata (may be in the class Osteichthyes or may be an amphibian, etc.)

D. a planktonic crustacean (e.g., cladoceran, copepod, etc.)

E. a benthic crustacean (e.g., ostracod, isopod, amphipod, crayfish, etc.)

F. an insect (e.g., mayfly, dragonfly, damselfly, stonefly, caddisfly, mosquito, midge, etc.)

G. a family in a phylum other than Arthropoda or Chordata (e.g., Rotifera, Annelida, Mollusca, etc.)

H. a family in any order of insect or any phylum not already represented.

OPP Chronic Benchmark Values

The OPP invertebrate chronic benchmark is 1,000 µg/L, which is the NOEC for Daphnia magna.

The OPP fish chronic benchmark is 770 µg/L, which is the NOEC for Oncorhynchus mykiss.

GLI Tier II Chronic Value Calculation

Paired quantitative chronic and acute toxicity data for norflurazon were not available for freshwater aquatic organisms; therefore, each of the three ACRs were fulfilled by the default value of 18. The calculated SCV for norflurazon is $56.25 \,\mu$ g/L.

Detailed calculations for the SCV are shown below:

$$SACR = Geometric Mean of the ACRs$$
$$SACR = \sqrt[3]{18 * 18 * 18} = 18$$
$$SCV = \frac{SAV}{SACR}$$
$$SCV = \frac{1,012.5}{18} = 56.25 \ \mu g/L$$

Table 5. Summary and comparison of chronic values for norflurazon. Magnitude relative to ALB is the OPP ALB/OW value, the ratio for the OPP value/OW value for each value comparison. A ratio >1 indicates the OPP value is higher than the OW value.

Pesticide	Most Sensitive OPP ALB (NOAEC) (Year published, species)	OW Tier II value (# of ACRs filled, magnitude relative to ALB)	OW Invertebrate-only HC05 (# of ACRs filled, magnitude relative to ALB)	Notes
Norflurazon	770 μg/L (2023, Oncorhynchus mykiss).	56.3 μg/L (GLI Tier II; 0 measured-data based ACRs, 14X)	NA	Three default ACRs of 18 used to derive GLI Tier II value. Note the lowest ALB is for nonvascular plants ($5.33 \mu g/L$), but the GLI Tier II value is based on <i>O. mykiss</i> so the vertebrate ALB is used in this comparison.

1.3.6.3 Norflurazon References

MRID 00035709. Vilkas, A.G.; Browne, A.M. 1980. The Acute Toxicity ofNorflurazon (99.4 Percent Active Ingredient) to the Water Flea, Daphnia magna Straus: UCCES Project No. 11506-16-04. (Unpublished study including letter dated May 20, 1980 from R.J. McCormack to R.E. Stoll, received Jun 5, 1980 under 11273- 19; prepared by Union Carbide Corp., submitted by Sandoz, Inc.—Crop Protection, San Diego, Calif.; CDL:242619-A).

MRID 00087863. Stoll, R.E.; LeBlanc, G.A.; Sousa, J.V. 1981. Acute LCI5W' Toxic-ity Study in the Rainbow Trout on Nortlurazon: EG&G Bionomics No. BW 31-7-899; Sandoz Project T - 163 7. (Unpublished study received Dec 18, 1981 under 11273-10; prepared in cooperation with EG & G, Bionomics, submitted by Sandoz, Inc.--Crop Protec-tion, San Diego, Calif.; CDL:246433-A).

MRID 00118047. LeBlanc, G. (1982) Early Life Stage Toxicity Study in the Fathead Minnow on Norflurazon: Report #BW-82-5-1166; Sandoz Project T- 1767. (Unpublished study received Nov 15, 1982 under 11273-13; prepared by EG & G, Bionomics, submitted by Sandoz, Inc., Crop Protection, San Diego, CA; CDL:248828-A).

MRID 00118048. LeBlanc, G. (1982) Early-life Stage Toxicity Study in the Rainbow Trout on Norflurazon: Report #BW-82-5-1165; Sandoz Project T- 1733. (Unpublished study received Nov 15, 1982 under 11273-13; prepared by EG & G, Bionomics, submitted by Sandoz, Inc., Crop Protection, San Diego, CA; CDL:248829-A).

MRID 00118049. LeBlanc, G. (1982) 21-day Chronic Toxicity Test in the Daphnia magna: Bionomics Report #BW-82-5-1169; Sandoz Project T-1768. (Unpublished study received Nov 15, 1982 under 11273-13; pre- pared by EG & G, Bionomics, submitted by Sandoz, Inc., Crop Pro- tection, San Diego, CA; CDL:248830-A). MRID 0087862. Stoll, R.E.; LeBlanc, G.A.; Sousa, J.V. 1981. Acute LCI5QI' Toxici-ty Study in the Bluegill Sunfish on Nortlurazon: EG&G Bionomics No. BW 81-7 -897; Sandoz Project T - 163 8. (Unpublished study received Dec 18, 1981 under 11273-10; prepared in cooperation with EG & G, Bionomics, submitted by Sandoz, Inc.--Crop Protec-tion, San Diego, Calif.; CDL:246434-A).

U.S. EPA. 1985. Guidelines for derving numerical national water critera for the protection of aquatic organisms and their uses. United States Environmental Protection Agency. Stephan, C.E., D.I. Mount, D.J. Hansen, J.H. Gentile, G.A. Chapman and W.A. Brungs. PB85-227049. National Technical Information Service, Springfield, VA. U.S.

U.S. EPA. 2008. Risks of norflurazon use to federally threatened California red-legged frog (*Rana aurora draytonii*). Pesticides effects determination. Office of Pesticide Programs. Washington, D.C. February 18, 2008.

U.S. EPA. 2012. Registration review. Preliminary problem formulation for environmental fate and ecological risk, endangered species, and drinking water assessments for norflurazon. Office of Pesticide Programs. Washington, D.C. August 9, 2012.

U.S. EPA. 2017. Registration review: Preliminary risk assessment for environmental fate and ecological risk for norflurazon. Office of Pesticide Programs. Washington, D.C. September 28, 2017.

U.S. EPA. 2024. Draft Comparison of Aquatic Life Protective Values Developed for Pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Clean Water Act (CWA). EPA-820-D-24-002.

1.3.7 Comparison of Aquatic Life Toxicity Values for Propargite: Data Sources and Considerations

Data used in the *Draft Comparison of Aquatic Life Protective Values Developed for Pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Clean Water Act (CWA)* (U.S. EPA 2024) for propargite were gathered by OW in 2015 and supplemented with data from the OPP propargite document on which the benchmark values are based (U.S. EPA 2014).

1.3.7.1 Propargite Acute Toxicity Data

Acute propargite data were gathered by OW in 2015 and supplemented with data from the OPP document on which the benchmark values are based (U.S. EPA 2014; See Table 1). Five LC₅₀s across three species representing three genera were classified as "quantitative" data; Three LC₅₀s (one each for *Daphnia magna, Lepomis macrochirus*, and *Oncorhynchus mykiss*; the three species represented with quantitative test data) were classified as acceptable in U.S. EPA (2014). One 24-hour LC₅₀s for the yellow fever mosquito *Aedes aegypti* was classified as qualitative because of duration, feeding during the test, unknown control mortality, and lack of information in source or control water, but included here to increase the number of invertebrate genera.

The final acute propargite dataset consisted of nine LC_{508} for four species representing four genera, of which two were invertebrate species representing two invertebrate genera. The invertebrate GMAVs are listed in Table 2.

OW MDR Group ^a	Genus	Species	LC50/ EC50 (µg/L)	SMAV (µg/L)	GMAV (µg/L)	Reference
D	Daphnia	magna	91			ECOTOX 344; U.S. Environmental Protection Agency, and Office of Pesticide Programs. 2013
D	Daphnia	magna	14	45.64	45.64	MRID 46015901; Knight and Allan. 2002
D	Daphnia	magna	74.6			MRID 43759002; Davis. 1995
F	Aedes	aegypti	780.0	780.0	780.0	ECOTOX 116328; Pridgeon et al. 2009
А	Oncorhynchus	mykiss	118	89.86	89.86	ECOTOX 344; U.S. Environmental Protection Agency, and Office of Pesticide Programs. 2013
А	Oncorhynchus	mykiss	43			MRID 41458301; Sousa. 1990
А	Oncorhynchus	mykiss	143			MRID 43759001; Davis. 1995
В	Lepomis	macrochirus	167	116.3	116.3	ECOTOX 344; U.S. Environmental Protection Agency, and Office of Pesticide Programs. 2013
В	Lepomis	macrochirus	81			MRID 46073301; Knight and Allan. 2002

Table 1. Acute toxicity data of propargite to freshwater aquatic organisms.

a MDR Groups – Freshwater:

- A. the family Salmonidae in the class Osteichthyes
- B. a second family in the class Osteichthyes, preferably a commercially or recreationally important warmwater species (e.g., bluegill, channel catfish, etc.)
- C. a third family in the phylum Chordata (may be in the class Osteichthyes or may be an amphibian, etc.)
- D. a planktonic crustacean (e.g., cladoceran, copepod, etc.)
- E. a benthic crustacean (e.g., ostracod, isopod, amphipod, crayfish, etc.)
- F. an insect (e.g., mayfly, dragonfly, damselfly, stonefly, caddisfly, mosquito, midge, etc.)
- G. a family in a phylum other than Arthropoda or Chordata (e.g., Rotifera, Annelida, Mollusca, etc.)
- H. a family in any order of insect or any phylum not already represented.

OPP Acute Benchmark Values

The OPP invertebrate acute benchmark is 7 μ g/L, which is ½ of the *Daphnia magna* LC₅₀ of 14 μ g/L.

The OPP fish acute benchmark is 40.5 μ g/L, which is ½ of the *Lepomis macrochirus* LC₅₀ of 81 μ g/L.

GLI Tier II Acute Value Calculation

The acceptable acute dataset for propargite fulfills three of the eight MDRs, corresponding to the use of a SAF of 8. Applying the SAF to the lowest, most sensitive GMAV (i.e., 35.69 μ g/L for water flea (*Daphnia magna*), the calculated SAV is 4.462 μ g/L. The SMC, which is calculated as half the SAV, is 2.231 μ g/L.

Detailed calculations for the SMC are shown below:

$$SAV = \frac{\text{Lowest GMAV}}{\text{SAF}}$$
$$SAV = \frac{35.69}{8} = 4.462 \ \mu g/L$$
$$SMC = \frac{\text{SAV}}{2}$$
$$SMC = \frac{4.462}{2} = 2.231 \ \mu g/L$$

Genus-Level Invertebrate Acute HC₀₅

No genus-level invertebrate acute HC_{05} could be calculated using the USEPA (1985) methodology because there were only two invertebrate genera (Table 2).

Genus	Species	SMAV	GMAV	GMAV Rank
Aedes	aegypti	780.0	780.0	2
Daphnia	magna	45.64	45.64	1

Table 2. Propargite invertebrate SMAVs and GMAVs (µg/L).

Table 3. Summary and comparison of chronic values for propargite.

Magnitude relative to ALB is the OPP ALB/OW value, the ratio for the OPP value/OW value for each value comparison. A ratio <1 indicates the OPP value is lower than the OW value and a ratio >1 indicates the OPP value is higher than the OW value.

Pesticide	OPP Invertebrate ALB (lowest LC ₅₀ /2) (Year published, species)	OW GLI Tier II value (# of MDRs filled, magnitude relative to ALB)	OW Genus-level Invertebrate-only HC ₀₅ /2
Propargite	7 μg/L	2.231 µg/L (3 MDRs	NA
(OS Miticide)	(2021; Daphnia magna)	filled, 3.1X)	(1 genus)

Figure 1 shows a genus-level sensitivity distribution for the propargite dataset. Major taxonomic groups are delineated by different symbols, and invertebrate genera are identified by name. Lines denoting the OPP acute benchmark values and GLI Tier II calculated value are included.

Figure 1. Propargite genus-level acute SD.

Symbols represent GMAVs calculated using all available data from obtained from the EPA's 2015 literature search, supplemented the OPP registration review document for propargite (U.S. EPA 2014).

1.3.7.2 Propargite Chronic Toxicity Data

Chronic data for propargite were gathered by OW in 2015 and supplemented with data from the OPP propargite document on which the benchmark values are based (U.S. EPA 2014). The final chronic propargite dataset consisted of three NOECs/LOECS for three species across three genera, of which one was an invertebrate genus and two were vertebrate genera (Table 4).

OW MDR Group ^a	Genus	Species	NOEC (µg/L)	LOEC (µg/L)	Endpoint	Reference	Comment
D	Daphnia	magna	9.000	14.00	Growth (length)	MRID 0126738; Forbis et al. 1983 / MRID 00142594; Forbis and Franklin. 1984	Quantitative
А	Oncorhynchus	mykiss	14	21	Survival and growth (weight)	MRID 41458301; Sousa 1990	Supplemental
В	Pimephales	promelas	16	28	Survival and growth (weight)	MRID 00126739 / 00132605; Forbis et al. 1983	Acceptable

Table 4. Chronic toxicity data of propargite to freshwater aquatic organisms

a MDR Groups - Freshwater:

A. the family Salmonidae in the class Osteichthyes

B. a second family in the class Osteichthyes, preferably a commercially or recreationally important warmwater species (e.g., bluegill, channel catfish, etc.)

C. a third family in the phylum Chordata (may be in the class Osteichthyes or may be an amphibian, etc.)

D. a planktonic crustacean (e.g., cladoceran, copepod, etc.)

E. a benthic crustacean (e.g., ostracod, isopod, amphipod, crayfish, etc.)

F. an insect (e.g., mayfly, dragonfly, damselfly, stonefly, caddisfly, mosquito, midge, etc.)

G. a family in a phylum other than Arthropoda or Chordata (e.g., Rotifera, Annelida, Mollusca, etc.)

H. a family in any order of insect or any phylum not already represented.

OPP Chronic Benchmark Values

The OPP invertebrate chronic benchmark is $9 \mu g/L$, which is the NOEC for *Daphnia magna*. The OPP fish chronic benchmark is $16 \mu g/L$, which is the NOEC for *Pimephales promelas*.

GLI Tier II Chronic Value Calculation

Paired quantitative chronic and acute toxicity data for propargite were available for water flea (*Daphnia magna*), allowing for the calculation of one ACR. The remaining two ACRs were fulfilled by the default value of 18. The acute and chronic tests were conducted in different laboratories using water of different physical characteristics; therefore, OPP's approach was used to calculate the ACR. OPP's approach involves the use of the NOAEC in the calculations. The calculated SCV for propargite is $0.561 \mu g/L$.

Detailed calculations for the SCV are shown below:

SACR = Geometric Mean of the ACRs

 $SACR = \sqrt[3]{1.556 * 18 * 18} = 7.958$

$$SCV = \frac{SAV}{SACR}$$
$$SCV = \frac{4.462}{7.958} = 0.561 \,\mu g/L$$

Table 5. Summary and comparison of chronic values for propargite.

Magnitude relative to ALB is the OPP ALB/OW value, the ratio for the OPP value/OW value for each value comparison. A ratio >1 indicates the OPP value is higher than the OW value.

Pesticide	OPP Invertebrate ALB (NOAEC) (Year published, species)	OW Tier II value (# of ACRs filled, magnitude relative to ALB)	OW Invertebrate- only HC ₀₅ (# of ACRs filled, magnitude relative to ALB)	Notes
Propargite	9 μg/L (2021, Daphnia magna)	0.56 µg/L (GLI Tier II; 1 ACR, 16X)	NA	Two default ACRs of 18 used to derive GLI Tier II value. Note the lowest ALB is for nonvascular plants (1.27 μ g/L), but the GLI Tier II value is based on <i>D. magna</i> so the invertebrate ALB is used in this comparison.

1.3.7.3 Propargite References

ECOTOX 116328. Pridgeon, J.W., J.J. Becnel, G.G. Clark, and K.J. Linthicum. 2009. A High-Throughput Screening Method to Identify Potential Pesticides for Mosquito Control. J. Med. Entomol.46(2): 335-341.

ECOTOX 344. U.S. Environmental Protection Agency, and Office of Pesticide Programs. 2013. Pesticide Ecotoxicity Database (Formerly: Environmental Effects Database (EEDB)) Environmental Fate and Effects Division, U.S.EPA, Washington, D.C.

MRID 00126739 / 00123605. Forbis, A.; Franklin, L.; Boudreau, P.; et al. 1983. Early Life Stage Toxicity of Omite to Fathead Minnows in a Flow-through System: Early Life Stage Final Report #29634. (Unpublished study received Apr 8, 1983 under 400-104; prepared by Analytical Bio-Chemistry Laboratories, Inc., submitted by Uniroyal Chemi- cal, Bethany, CT; CDL:249886-A)

MRID 00142594. Forbis, A.; Franklin, L. 1984. Chronic Toxicity of Omite to Daphnia magna under Flow-through Test Conditions: ABC Final Re- port #31133. Unpublished study prepared by Analytical Bio-Chemistry Laboratories, Inc. 172 p.U.S. EPA. 2015. Tier II aquatic life community benchmarks for propargite. Office of Water and Office of Pesticide Programs. Washington, D.C. March 2015.

MRID 0126738. Forbis, A.; Franklin, L.; Boudreau, P.; et al. 1983. Early Life Stage Toxicity of Omite to Fathead Minnows in a Flow-through System: Early Life Stage Final Report #29634. (Unpublished study received Apr 8, 1983 under 400-104; prepared by Analytical Bio-Chemistry Laboratories, Inc., submitted by Uniroyal Chemical, Bethany, CT; CDL:249886-A).

MRID 41458301. Sousa, J. 1990. Omite Technical: Acute Toxicity to Rainbow Trout (Oncorhynchus mykiss): Lab Project Number: 89-6-3010: 41.0289. 6117.108. Unpublished study prepared by Springborn Labs., Inc. 41 p.

MRID 43759001. Davis, J. 1995. Comite: Acute Toxicity to Rainbow Trout (Oncorhynchus mykiss) Under Flow-Through Test Conditions: Lab Project Number: J9501010B. Unpublished study prepared by Toxikon Environmental Sciences. 64 p.

MRID 43759002. Davis, J. 1995. Comite: Acute Toxicity to Water Flea (Daphnia magna) Under Flow-Through Test Conditions: Lab Project Number: J9501010C. Unpublished study prepared by Toxikon Environmental Sciences. 64 p.

MRID 46015901. Knight, B.; Allan, J. 2002. Determination of Acute Toxicity (EC50) of Propargite to Daphnia magna (48 h, Continous-Flow). Project Number: 20632, 800052. Unpublished study prepared by Inversek Research International. 54 p.

MRID 46073301. Knight, B.; Allan, J. 2002. Determination of Acute Toxicity (LC50) of Propargite to Bluegill Sunfish (96 h, Continuous-Flow). Project Number: 20480, 800031. Unpublished study prepared by Inversek Research International. 52 p.

U.S. EPA. 1985. Guidelines for derving numerical national water critera for the protection of aquatic organisms and their uses. United States Environmental Protection Agency. Stephan, C.E., D.I. Mount, D.J. Hansen, J.H. Gentile, G.A. Chapman and W.A. Brungs. PB85-227049. National Technical Information Service, Springfield, VA. U.S.

U.S. EPA. 2014. Registration review. Problem formulation (for) propargite. Office of Pesticide Programs. Washington, D.C. May 5, 2014.

U.S. EPA. 2024. Draft Comparison of Aquatic Life Protective Values Developed for Pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Clean Water Act (CWA). EPA-820-D-24-002.

1.3.8 Comparison of Aquatic Life Toxicity Values for Pyridaben: Data Sources and Considerations

Data used in the *Draft Comparison of Aquatic Life Protective Values Developed for Pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Clean Water Act (CWA)* (U.S. EPA 2024) for pyridaben were gathered by the OW in 2015, supplemented with additional values from the OPP document on which the benchmark values are based (U.S. EPA 2010).

1.3.8.1 Pyridaben Acute Toxicity Data

Acute pyridaben toxicity data were gathered by the OW in 2015 and supplemented with additional values from the OPP document on which the benchmark values are based (U.S. EPA 2010; See Table 1). Four LC₅₀s across three species and three genera were identified and classified as "quantitative" data. Four LC₅₀s (two for *Oncorhynchus mykiss*, one for *Daphnia magna*, and one for *Pimephales*) were classified as acceptable in Appendix C of U.S. EPA (2010).

The final acute pyridaben dataset consisted of eight LC₅₀s for four species representing four genera, of which one was an invertebrate species. The invertebrate GMAV is listed in Table 2.

OW MDR Group ^a	Genus	Species	LC50/ EC50 (µg/L)	SMAV (µg/L)	GMAV (µg/L)	Reference
D	Daphnia	magna	0.530	0 7252	0 7252	MRID 42680111; Willis and Wilson. 1987
D	Daphnia	magna	1.02	0.7555	0.7555	MRID 43680404; Graves and Swigert. 1993
А	Oncorhynchus	mykiss	0.720			MRID 43680402; Ward. 1994
А	Oncorhynchus	mykiss	2.3	1.743	1.743	MRID 42680109; Willis and Wilson. 1987
А	Oncorhynchus	mykiss	3.2			MRID 43680403; Bootman et al. 1989
В	Lepomis	macrochirus	3.430	2.040	2.040	MRID 43680401; Ward. 1994
В	Lepomis	macrochirus	2.520	2.940 2.940		MRID 42680110; Willis. 1988
С	Pimephales	promelas	2.30	2.3	2.3	MRID 43792106; Rhodes et al. 1995

Table 1. Acute toxicity data of pyridaben to freshwater aquatic organisms.

a MDR Groups - Freshwater:

A. the family Salmonidae in the class Osteichthyes

- B. a second family in the class Osteichthyes, preferably a commercially or recreationally important warmwater species (e.g., bluegill, channel catfish, etc.)
- C. a third family in the phylum Chordata (may be in the class Osteichthyes or may be an amphibian, etc.)
- D. a planktonic crustacean (e.g., cladoceran, copepod, etc.)
- E. a benthic crustacean (e.g., ostracod, isopod, amphipod, crayfish, etc.)
- F. an insect (e.g., mayfly, dragonfly, damselfly, stonefly, caddisfly, mosquito, midge, etc.)
- G. a family in a phylum other than Arthropoda or Chordata (e.g., Rotifera, Annelida, Mollusca, etc.)
- H. a family in any order of insect or any phylum not already represented.

OPP Acute Benchmark Values

The OPP invertebrate acute benchmark is 0.265 μ g/L, which is ½ of the *Daphnia magna* LC₅₀ of 0.530 μ g/L.

The OPP fish acute benchmark is 0.36 μ g/L, which is ½ of the *Oncorhynchus mykiss* LC₅₀ of 0.72 μ g/L.

GLI Tier II Acute Value Calculation

The acceptable acute dataset for pyridaben fulfills three OW MDRs, corresponding to the use of a SAF of 8. Applying the SAF to the lowest, most sensitive GMAV (i.e., 0.530 μ g/L for water flea (*Daphnia magna*), the calculated SAV is 0.066 μ g/L. The SMC, which is calculated as half the SAV, is 0.033 μ g/L.

Detailed calculations for the SMC are shown below:

$$SAV = \frac{\text{Lowest GMAV}}{\text{SAF}}$$
$$SAV = \frac{0.530}{8} = 0.066 \ \mu g/L$$
$$SMC = \frac{\text{SAV}}{2}$$
$$SMC = \frac{0.066}{2} = 0.033 \ \mu g/L$$

Genus-Level Invertebrate-only Acute HC05

No genus-level invertebrate acute HC_{05} could be calculated using the USEPA (1985) methodology because there was only one invertebrate genus (Table 2).

Table 2. Pyridaben invertebrate SMAV and GMAV (µg/L).

Genus	Species	SMAV	GMAV	GMAV Rank
Daphnia	magna	0.7353	0.7353	1

Table 3. Summary and comparison of acute values for pyridaben.

Magnitude relative to ALB is the OPP ALB/OW value, the ratio for the OPP value/OW value for each value comparison. A ratio >1 indicates the OPP value is higher than the OW value.

Pesticide	OPP Invertebrate ALB (lowest LC ₅₀ /2) (Year published, species)	OW GLI Tier II value (# of MDRs filled, magnitude relative to ALB)	OW Genus-level Invertebrate-only ALC (FAV/2)
Pyridaben	0.265 μg/L	0.033μ g/L (3 MDRs filled,	NA
(Nicotinamide Inhibitor)	(2023; Daphnia	8X)	(1 genus)
	magna)		

Figure 1 shows a genus-level sensitivity distribution for the pyridaben dataset. Major taxonomic groups are delineated by different symbols, and invertebrate genera are identified by name. Lines denoting the OPP acute benchmark values and GLI Tier II calculated acute value are included.

Figure 1. Pyridaben genus-level acute SD.

Symbols represent GMAVs calculated using all available data from EPA's 2015 literature search supplemented the OPP registration review document for pyridaben (U.S. EPA 2010).

1.3.8.2 Pyridaben Chronic Toxicity Data

Chronic pyridaben toxicity data were gathered by the OW in 2015 and supplemented with additional values from the OPP document on which the benchmark values are based (U.S. EPA 2010). The final chronic pyridaben dataset consisted of two NOECs/LOECS for two species across two genera, of which one was an invertebrate and one was a vertebrate (Table 4).

Tuste il chilothe tohietty data of pyrtaasen to fresh auter aquatte of gamshist								
OW MDR Group ^a	Genus	Species	NOEC (µg/L)	LOEC (µg/L)	Endpoint	Reference	Comment	
D	Daphnia	magna	0.044	0.086	Delayed time to reproduction	MRID 43680408; Drottar and Swigert 1994	Quantitative	
В	Pimephales	promelas	0.277	0.555	Growth of F0 and F1 generation and F1 survival	MRID 43792106; Rhodes et al. 1995	Acceptable	

Table 4. Chronic toxicity data of pyridaben to freshwater aquatic organisms.

a MDR Groups - Freshwater:

A. the family Salmonidae in the class Osteichthyes

B. a second family in the class Osteichthyes, preferably a commercially or recreationally important warmwater species (e.g., bluegill, channel catfish, etc.)

C. a third family in the phylum Chordata (may be in the class Osteichthyes or may be an amphibian, etc.)

D. a planktonic crustacean (e.g., cladoceran, copepod, etc.)

E. a benthic crustacean (e.g., ostracod, isopod, amphipod, crayfish, etc.)

F. an insect (e.g., mayfly, dragonfly, damselfly, stonefly, caddisfly, mosquito, midge, etc.)

G. a family in a phylum other than Arthropoda or Chordata (e.g., Rotifera, Annelida, Mollusca, etc.)

H. a family in any order of insect or any phylum not already represented.

OPP Chronic Benchmark Values

The OPP invertebrate chronic benchmark is 0.044 µg/L, which is the NOEC for Daphnia magna.

The OPP fish chronic benchmark is 0.087 μ g/L, which is the estimated NOEC for *Oncorhynchus mykiss*. The *O. mykiss* NOEC was estimated using *P. promelas* data. Acute and chronic toxicity data are available for *P. promelas* exposed to pyridaben (96-h LC50 = 2.3 μ g/L; NOAEC = 0.277 μ g/L; ACR = 8.3; MRID 43792106). Because the rainbow trout is more sensitive on an acute exposure basis, the ACR is used to derive a NOAEC for the rainbow trout (0.72 ÷ 8.3 = 0.0867 μ g/L)

GLI Tier II Chronic Value Calculation

Paired quantitative chronic and acute toxicity data for pyridaben were available for water flea (*Daphnia magna*), allowing for the calculation of one ACR. The remaining two ACRs were fulfilled by the default value of 18. The acute and chronic tests were conducted in different laboratories using water of different physical characteristics; therefore, OPP's approach was used to calculate the ACR. OPP's approach involves the use of the NOAEC in the calculations. The calculated SCV for pyridaben is $0.004 \mu g/L$.

Detailed calculations for the SCV are shown below:

SACR = Geometric Mean of the ACRs

$$SACR = \sqrt[3]{12.05 * 18 * 18} = 15.74$$
$$SCV = \frac{SAV}{SACR}$$
$$SCV = \frac{0.066}{15.74} = 0.004 \ \mu g/L$$

Table 5. Summary and comparison of chronic values for pyridaben.

Magnitude relative to ALB is the OPP ALB/OW value, the ratio for the OPP value/OW value for each value comparison. A ratio <1 indicates the OPP value is lower than the OW value and a ratio >1 indicates the OPP value is higher than the OW value.

Pesticide	OPP Invertebrate ALB (NOAEC) (Year published, species)	OW Tier II value (# of ACRs filled, magnitude relative to ALB)	OW Invertebrate- only ALC (FCV) (# of ACRs filled, magnitude relative to ALB)	Notes	
Pyridaben	0.044 µg/L	0.004 µg/L	NA	Two default ACRs of 18	
	(2023, <i>Daphnia</i>	(GLI Tier II; 1		used to derive GLI Tier	
	magna)	ACR, 11X)		II value.	

1.3.8.3 Pyridaben References

MRID 42680109. Willis, C.; Wilson, I. (1987) The Acute Toxicity of NC-129 to Rainbow Trout: Final Report: Lab Project Number: AFT/86/022B: 88/0596. Unpublished study prepared by Aquatox, Ltd. 40 p.

MRID 42680110. Willis, C. 1988. The Acute Toxicity of NC-129 to Bluegill Sunfish: Final Report: Lab Project Number: LSR/87/NAS021/600: 87/NAS021/600: 88/0595. Unpublished study prepared by Life Science Research, Ltd. 51 p.

MRID 42680111. Willis, C.; Wilson, I. 1987. The Acute Toxicity of NC-129 to Daphnia Magna: Final Report: Lab Project Number: AFT/86/024: 88/0594. Unpublished study prepared by Aquatox, Ltd. 35 p.

MRID 43680401. Ward, G. 1994. Pyridaben Technical: Acute Toxicity to Bluegill, Lepomis macrochirus, Under Flow- Through Conditions: Lab Project Number: 94/5002: 93062: ER93046. Unpublished study prepared by Toxikon Environmental Sciences. 33 p.

MRID 43680402. Ward, G. 1994. Pyridaben Technical: Acute Toxicity to Rainbow Trout, Oncorhynchus mykiss, Under Flow- Through Conditions: Lab Project Number: 94/5001: 93142: ER93047. Unpublished study prepared by Toxikon Environmental Sciences. 33 p.

MRID 43680403. Bootman, J.; Jenkins, W.; O'Connor, J. (1989) NC-129: 21-Day Rainbow Trout Toxicity Study Under Flow-Through Conditions: Lab Project Number: 89/0258: 88/NAS041/0824: 88/0824. Unpublished study prepared by Life Sciences Research Ltd. 41 p.

MRID 43680404. Graves, W.; Swigert, J. (1993) Pyridaben Technical A.I.: A 48-Hour Flow-Through Acute Toxicity Test with the Cladoceran (Daphnia magna): Lab Project Number: 93/5169: ER 93057: 92076. Unpublished study prepared by Wildlife International Ltd. 45 p. MRID 43680408. Drottar, K.; Swigert, J. 1994. (Carbon 14)-Pyridaben: A Flow-Through Life Cycle Toxicity Test with the Cladoceran, Daphnia magna: Lab Project Number: 94/5074: 93063: ER 94001. Unpublished study prepared by Wildlife International Ltd. 61 p. U.S. EPA. 2015. Tier II aquatic life community benchmarks for pyridaben. Office of Water and Office of Pesticide Programs. Washington, D.C. March 2015.

MRID 43792106. Rhodes, J.; Leak, T.; Holmes, C. 1995. Full Life-Cycle Toxicity of BAS 300 I (Pyridaben) to the Fathead Minnow (Pimephales promelas) Under Flow-Through Conditions: Lab Project Number: 40571: 92160: ER94070. Unpublished study prepared by ABC Labs, Inc. and BASF Corp. 1310 p.

U.S. EPA. 1985. Guidelines for derving numerical national water critera for the protection of aquatic organisms and their uses. United States Environmental Protection Agency. Stephan, C.E., D.I. Mount, D.J. Hansen, J.H. Gentile, G.A. Chapman and W.A. Brungs. PB85-227049. National Technical Information Service, Springfield, VA. U.S.

U.S. EPA. 2010. Registration review: Preliminary problem formulation for environmental fate, ecological risk, endangered species, and drinking water exposure assessments for pyridaben. Office of Pesticide Programs. Washington, D.C. August 26, 2010.

U.S. EPA. 2024. Draft Comparison of Aquatic Life Protective Values Developed for Pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Clean Water Act (CWA). EPA-820-D-24-002.

2 HERBICIDES

2.1 DATA-RICH HERBICIDES

2.1.1 Comparison of Aquatic Life Toxicity Values for Atrazine: Data Sources and Considerations

Data used in the *Draft Comparison of Aquatic Life Protective Values Developed for Pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Clean Water Act (CWA)* (U.S. EPA 2024) were obtained from the Office of Pesticide Programs (OPP) registration review document for atrazine (U.S. EPA 2016) and an EPA ECOTOX Knowledgebase search conducted in 2021. No chronic comparative analysis was conducted for atrazine.

2.1.1.1 Atrazine Acute Toxicity Data

Acute data for atrazine are shown in Table 1. Ranked invertebrate GMAVs from all data sources are listed in Table 2.

OW MDR ^a	Species	LC50	SMAV	GMAV	Source	MRID / ECOTOX REF
F	Acroneuria sp.	6700	6700	6700	ECOTOX	17138
В	Ameiurus melas	35000	35000	35000	ECOTOX	7199
Plant	Anabaena cylindrica	3600	2078	585.0	ECOTOX	11659
		1200			ECOTOX	11659
Plant	Anabaena flos-aquae	230	230		OPP / ECOTOX	41065203a/ 344 / 103781
Plant	Anabaena inaequalis	100	54.77		ECOTOX	11659
		30			ECOTOX	11659
Plant	Anabaena variabilis	4000	4472		ECOTOX	11659
		5000			ECOTOX	11659
Plant	Ankistrodesmus braunii	60	60	60	ECOTOX	11424
Н	Arrenurus sp.	<20	<20	<20	ECOTOX	153867
Plant	Azolla caroliniana	>100000	>100000	>100000	ECOTOX	176903
С	Bufo americanus	>48,000	>48000	>48000	ECOTOX	19124
В	Carassius auratus	60000	58181	>58181	OPP / ECOTOX	230303/ 80976
		56000			ECOTOX	80976
		58615			ECOTOX	80976
В	Carassius carassius	>100000	>100000		ECOTOX	7199
Plant	Ceratophyllum sp.			22	ECOTOX	152770
Plant	Ceratophyllum demersum	22	22		ECOTOX	19461
					ECOTOX	112909
D	Ceriodaphnia dubia	>30000	>30000	>30000	ECOTOX	3590
F	Chironomus tentans	720	>4900	>25	OPP	24377

Table 1. Acute toxicity data of atrazine to freshwater aquatic organisms. (MDR specifies OW minimum data requirements under the Guidelines.)
OW MDR ^a	Species	LC50	SMAV	GMAV	Source	MRID / ECOTOX REF
		>28000			ECOTOX	156062
F	Chironomus tepperi	25	25		ECOTOX	153818
Plant	Chlorella pyrenoidosa	300	547.7	547.7	ECOTOX	11659
		1000			ECOTOX	11659
В	Coregonus fera	11200	17163	17163	ECOTOX	7792
		26300			ECOTOX	7792
В	Cyprinus carpio	2142	6346	6346	ECOTOX	170959
		18800			ECOTOX	6681
В	Danio rerio	6090	22048	22048	ECOTOX	174503
		15630			ECOTOX	174503
		34190			ECOTOX	174503
		29060			ECOTOX	170833
		39510			ECOTOX	170833
		30740			ECOTOX	170833
D	Daphnia carinata	22400	28367	25262	ECOTOX	74233
		23100			ECOTOX	74233
		24600			ECOTOX	74233
		25300			ECOTOX	74233
		26700			ECOTOX	74233
		60600			ECOTOX	160885
D	Daphnia magna	9400	22497		ECOTOX	50679
		72000			ECOTOX	89626
		16823			ECOTOX	170827
Е	Diporeia sp.	>3000	>3000	>3000	ECOTOX	118745
Е	Echinogammarus tibaldii	3300	3300	3300	ECOTOX	18621
Plant	Elodea canadensis	4.6	75.88	75.88	OPP	McGregor et al 2008
		79			ECOTOX	160884
		116			ECOTOX	160884
		305			ECOTOX	160884
		80			ECOTOX	9159
		75			ECOTOX	4634
		187.8			ECOTOX	154073
G	Elliptio complanata	>30000	>30000	>30000	ECOTOX	100597
Е	Gammarus italicus	10100	10100	14168	ECOTOX	18621
Е	Gammarus kischineffensis	18900	18900		ECOTOX	183521
Е	Gammarus pulex	14900	14900		ECOTOX	5023
Е	Hyalella azteca	1500	6594	6594	ECOTOX	118745
		13000			ECOTOX	89626
		14700			ECOTOX	17138
В	Ictalurus punctatus	220	220	220	ECOTOX	19124

OW MDR ^a	Species	LC50	SMAV	GMAV	Source	MRID / ECOTOX REF
G	Lampsilis fasciola	>30000	>30000	>30000	ECOTOX	100597
		>30000			ECOTOX	100597
G	Lampsilis siliquoidea	>30000	>30000		ECOTOX	99469
		>30000			ECOTOX	99469
		>30000			ECOTOX	100597
		>30000			ECOTOX	100597
Plant	Lemna gibba	43	49.51	74.63	OPP	43074803
		57			OPP	46150901
Plant	Lemna minor	5270	112.5		ECOTOX	176903
		60			ECOTOX	13695
		149.8			ECOTOX	174524
		188.8			ECOTOX	160947
		93.2			ECOTOX	174501
		114			ECOTOX	170972
	· · ·	• • • • • •	2 (1 5)	2 (1 5 0	OPP /	24717 /
В	Lepomis macrochirus	24000	36170	36170	ECOTOX	80976
~		54510			ECOTOX	344
С	Lithobates boylii	5517	5517	5517	ECOTOX	118706
С	Lithobates catesbeiana	410	>2561		ECOTOX	19124
		>16000			ECOTOX	89626
G	Lumbriculus variegatus	>37100	>37100	>37100	ECOTOX	17138
D	Mesocyclops longisetus	1085	1277	1277	ECOTOX	164050
		1503			ECOTOX	164050
Plant	Myriophyllum aquaticum	142.2	194.3	768.9	ECOTOX	164771
		154.5			ECOTOX	164771
		458.8			ECOTOX	164771
		93.5			ECOTOX	160947
		294			ECOTOX	170972
Plant	Myriophyllum sibiricum	2119	2119		ECOTOX	74985
Plant	Myriophyllum spicatum	1104	1104		ECOTOX	9159
Plant	Najas sp.	24	24	24	ECOTOX	19461
Plant	Navicula pelliculosa	60	60	60	ECOTOX	4106520367
Thun		00	00	00	OPP /	5117 105701
А	Oncorhynchus mykiss	5300	5478	10769	ECOTOX	24716 / 344
		4500			OPP /	24716 pr 23-
		4300			ECOTOX	3-3/809/0
		12000			ECOTOX	19124
		13000			ECOTOX	09020
		5250			ECOTOX	80076
		17000			ECOTOX	7100
		1/000		J	ECUIUX	/199

OW MDR ^a	Species	LC50	SMAV	GMAV	Source	MRID / ECOTOX REF
А	Oncorhynchus kisutch	12000	12000		ECOTOX	89626
А	Oncorhynchus tshawytscha	19000	19000		ECOTOX	89626
Plant	Oscillatoria lutea	<1	< 1	< 1	OPP	23544
Е	Pacifastacus leniusculus	77900	77900	77900	ECOTOX	167249
В	Perca sp.	50000	50000	50000	ECOTOX	7199
G	Physella virgata	>34100	>34100	>34100	ECOTOX	17138
С	Physalaemus cuvieri	19690	19690	19690	ECOTOX	179653
В	Pimephales promelas	20000	20000	20000	OPP / ECOTOX	42547103 / 78794
Plant	Potamogeton perfoliatus	53	53	53	ECOTOX	4634
Plant	Pseudanabaena galeata	14	14	14	ECOTOX	6712
С	Pseudacris regilla	1686	1686	1686	ECOTOX	118706
D	Pseudosida ramosa	13500	17565	17565	ECOTOX	153837
		16900			ECOTOX	153837
		17400			ECOTOX	153837
		16400			ECOTOX	153837
		16900			ECOTOX	153837
		20900			ECOTOX	153837
		16400			ECOTOX	153837
		16400			ECOTOX	153837
		21600			ECOTOX	153837
		26000			ECOTOX	153837
		19900			ECOTOX	153837
		18700			ECOTOX	153837
		13400			ECOTOX	153837
		12300			ECOTOX	153837
		15200			ECOTOX	153837
		23500			ECOTOX	153837
		16900			ECOTOX	153837
		19700			ECOTOX	153837
Plant	Raphidocelis subcapitata	49	126.3	126.3	OPP	43074802
		120			ECOTOX	344
		53			ECOTOX	344
		58.7			ECOTOX	11780
		410			ECOTOX	11780
		200			ECOTOX	16010
		50			ECOTOX	17639
		235			ECOTOX	18093
		128.2			ECOTOX	18933
		159			ECOTOX	19285
		300			ECOTOX	19285

OW MDR ^a	Species	LC50	SMAV	GMAV	Source	MRID / ECOTOX REF
		110			ECOTOX	56747
		118			ECOTOX	62246
		220			ECOTOX	69584
		200			ECOTOX	69584
		200			ECOTOX	69584
		55			ECOTOX	69630
		115			ECOTOX	72626
		76.4			ECOTOX	82748
		89.9			ECOTOX	82748
		86.1			ECOTOX	82748
		63.4			ECOTOX	82748
		94.9			ECOTOX	82748
		81.4			ECOTOX	102060
		1,600			ECOTOX	118745
		277			ECOTOX	152770
		138			ECOTOX	152770
		103			ECOTOX	152770
		107			ECOTOX	152770
		65			ECOTOX	152770
		126			ECOTOX	152770
		196			ECOTOX	165277
		87.6			ECOTOX	174384
		130			ECOTOX	69631
В	Rhamdia quelen	10200	10200	10200	ECOTOX	111938
С	Rhinella arenarum	27160	27160	27160	ECOTOX	112588
В	Rutilus kutum	24950	26880	26880	ECOTOX	171062
		28960			ECOTOX	171062
Plant	Scenedesmus abundans	110	110	210.3	ECOTOX	11677
Dlast	Scenedesmus acutus var.	507.5	507.5		FCOTOY	1 < 4777
Plant		597.5	597.5		ECOTOX	104///
Plant	Scenedesmus quadricauda	100	141.4		ECOTOX	11659
Dlamt	Vallianania anteriore	200	162.0	1.02	ECOTOX	11659
Plant	vallisneria americana	103	165.0	103	ECOTOX	4634
G	Villosa constricta	>30000	>30000	>30000	ECOTOX	100597
G	vulosa aelumbis	>30000	30000	0.000	ECOTOX	179400
C	xenopus tropicalis	9620	9620	9620	ECUIUX	178499

a OW MDR Groups – Freshwater:

A. the family Salmonidae in the class Osteichthyes

B. a second family in the class Osteichthyes, preferably a commercially or recreationally important warmwater species (e.g., bluegill, channel catfish, etc.)

C. a third family in the phylum Chordata (may be in the class Osteichthyes or may be an amphibian, etc.)

D. a planktonic crustacean (e.g., cladoceran, copepod, etc.)

E. a benthic crustacean (e.g., ostracod, isopod, amphipod, crayfish, etc.)F. an insect (e.g., mayfly, dragonfly, damselfly, stonefly, caddisfly, mosquito, midge, etc.)G. a family in a phylum other than Arthropoda or Chordata (e.g., Rotifera, Annelida, Mollusca, etc.)H. a family in any order of insect or any phylum not already represented.

OPP Acute Benchmark Values

The OPP non-vascular plant benchmark value for atrazine is $<1 \ \mu g/L$, which is the LC₅₀ for *O*. *lutea*. The OPP vascular plant benchmark is 4.6 $\mu g/L$, which is the LC₅₀ for *E*. *canadensis*.

The OPP invertebrate acute benchmark value for atrazine is 360 μ g/L, which is $\frac{1}{2}$ the LC₅₀ for *C*. *tentans*.

The OPP fish acute benchmark value is 2,650 μ g/L, which is ¹/₂ the LC₅₀ for *O. mykiss*.

OW Acute Criterion

There is no acute criterion, criterion maximum concentration (CMC), for atrazine. An illustrative example was developed for this analysis, using all available data (Table 2). The FAV calculated following the U.S. EPA (1985) methodology for the 51 genera in the atrazine dataset was 11.47 μ g/L (Table 3).

					OW
Species	SMAV	GMAV	Rank	Percentile	MDR
					Group
caroliniana	>100,000	100,000	51	0.981	Plant
leniusculus	77,900	77,900	50	0.962	Е
auratus	58,181	76,277	49	0.942	В
sp.	50,000	50,000	48	0.923	В
americanus	>48,000	48,000	47	0.904	С
variegatus	>37,100	37,100	46	0.885	G
macrochirus	36,170	36,170	45	0.865	В
melas	35,000	35,000	44	0.846	В
virgata	>34,100	34,100	43	0.827	G
complanata	>30,000	30,000	42	0.808	G
fasciola	>30,000	30,000	41	0.788	G
constricta	>30,000	30,000	40	0.769	G
dubia	>30,000	30,000	39	0.750	D
arenarum	27,160	27,160	38	0.731	С
kutum	26,880	26,880	37	0.712	В
carinata	28,367	25,262	36	0.692	D
rerio	22,048	22,048	35	0.673	В
promelas	20,000	20,000	34	0.654	В
cuvieri	19,690	19,690	33	0.635	С
	Speciescarolinianaleniusculusauratussp.americanusvariegatusmacrochirusmelasvirgatacomplanatafasciolaconstrictadubiaarenarumkutumcarinatareriopromelascuvieri	Species SMAV caroliniana >100,000 leniusculus 77,900 auratus 58,181 sp. 50,000 americanus >48,000 variegatus >37,100 macrochirus 36,170 melas 35,000 virgata >34,100 complanata >30,000 fasciola >30,000 dubia >30,000 arenarum 27,160 kutum 26,880 carinata 28,367 rerio 22,048 promelas 20,000 cuvieri 19,690	SpeciesSMAVGMAVcaroliniana>100,000100,000leniusculus77,90077,900auratus58,18176,277sp.50,00050,000americanus>48,00048,000variegatus>37,10037,100macrochirus36,17036,170melas35,00030,000complanata>30,00030,000fasciola>30,00030,000dubia>30,00030,000arenarum27,16027,160kutum26,88026,880carinata28,36725,262rerio22,04822,048promelas20,00020,000cuvieri19,69019,690	SpeciesSMAVGMAVRankcaroliniana>100,000100,00051leniusculus77,90077,90050auratus58,18176,27749sp.50,00050,00048americanus>48,00047variegatus>37,10037,10046macrochirus36,17036,17045melas35,00035,00044virgata>34,10034,10043complanata>30,00030,00041constricta>30,00030,00040dubia>30,00030,00039arenarum27,16027,16038kutum26,88026,88037carinata28,36725,26236rerio22,04822,04835promelas20,00020,00034cuvieri19,69019,69033	SpeciesSMAVGMAVRankPercentilecaroliniana>100,000100,000510.981leniusculus77,90077,900500.962auratus58,18176,277490.942sp.50,00050,000480.923americanus>48,00048,000470.904variegatus>37,10037,100460.885macrochirus36,17036,170450.865melas35,00035,000440.846virgata>34,10034,100430.827complanata>30,00030,000410.788constricta>30,00030,000400.769dubia>30,00030,000390.750arenarum27,16027,160380.731kutum26,88026,880370.712carinata28,36725,262360.692rerio22,04822,048350.673promelas20,00020,000340.654cuvieri19,69019,690330.635

Table 2. Atrazine SMAVs and GMAVs ($\mu g/L$).

Genus	Species	SMAV	GMAV	Rank	Percentile	OW MDR Group
Pseudosida	ramosa	17,565	17,565	32	0.615	D
Coregonus	fera	17,163	17,163	31	0.596	В
Gammarus	italicus	10,100	14,168	30	0.577	Е
Oncorhynchus	kisutch	12,000	10,769	29	0.558	А
Rhamdia	quelen	10,200	10,200	28	0.538	В
Xenopus	tropicalis	9,620	9,620	27	0.519	С
Acroneuria	sp.	6,700	6,700	26	0.500	F
Hyalella	azteca	6,594	6,594	25	0.481	Е
Cyprinus	carpio	6,346	6,346	24	0.462	В
Lithobates*	boylii	5,517	3,759	23	0.442	С
Echinogammarus	tibaldii	3,300	3,300	22	0.423	Е
Diporeia*	sp.	>3,000	3,000	21	0.404	Е
Pseudacris	regilla	1,686	1,686	20	0.385	С
Mesocyclops	longisetus	1,277	1,277	19	0.365	D
Myriophyllum	aquaticum	194.3	768.9	18	0.346	Plant
Anabaena	cylindrica	2,078	585.0	17	0.327	Plant
Chlorella	pyrenoidosa	547.7	547.7	16	0.308	Plant
Chironomus*	tentans	>4,490	335	15	0.288	F
Ictalurus	punctatus	220	220	14	0.269	В
Scenedesmus	abundans	110	210.3	13	0.250	Plant
Vallisneria	americana	163.0	163.0	12	0.231	Plant
Raphidocelis	subcapitata	126.3	126.3	11	0.212	Plant
Elodea	canadensis	75.88	75.88	10	0.192	Plant
Lemna	gibba	49.51	74.63	9	0.173	Plant
Navicula	pelliculosa	60	60	8	0.154	Plant
Ankistrodesmus	braunii	60	60	7	0.135	Plant
Potamogeton	perfoliatus	53	53	6	0.115	Plant
Najas	sp.	24	24	5	0.096	Plant
Ceratophyllum	demersum	22	22	4	0.077	Plant
Arrenurus*	sp.	<20	20	3	0.058	Н
Pseudanabaena	galeata	14	14	2	0.038	Plant
Oscillatoria*	lutea	<1	1	1	0.019	Plant

*(non-definitive value, less than value)

a OW MDR Groups – Freshwater:

A. the family Salmonidae in the class Osteichthyes

B. a second family in the class Osteichthyes, preferably a commercially or recreationally important warmwater species (e.g., bluegill, channel catfish, etc.)

C. a third family in the phylum Chordata (may be in the class Osteichthyes or may be an amphibian, etc.)

- D. a planktonic crustacean (e.g., cladoceran, copepod, etc.)
- E. a benthic crustacean (e.g., ostracod, isopod, amphipod, crayfish, etc.)

F. an insect (e.g., mayfly, dragonfly, damselfly, stonefly, caddisfly, mosquito, midge, etc.)

G. a family in a phylum other than Arthropoda or Chordata (e.g., Rotifera, Annelida, Mollusca, etc.) H. a family in any order of insect or any phylum not already represented.

N	Rank	GMAV	ln(GMAV)	ln(GMAV) ²	P=R/(N+1)	sqrt(P)
51	4	22	3.091	9.55	0.0769	0.2774
	3	20	2.996	8.97	0.0577	0.2402
	2	14	2.639	6.96	0.0385	0.1961
	1	1	0.000	0.00	0.0192	0.1387
	Sum:		8.73	25.5	0.192	0.852
	$S^{2} =$	604.19				
	L =	-3.056				
	A =	2.440				
	FAV =	11.47				
	CMC =	5.7				

Table 3. Genus-level acute HC₀₅ for atrazine calculated following the U.S. EPA (1985) methodology.

Table 4. Summary and comparison of acute values for atrazine.

Magnitude relative to ALB is the OPP ALB/OW value, the ratio for the OPP value/OW value for each value comparison. A ratio <1 indicates the OPP value is lower than the OW value and a ratio >1 indicates the OPP value is higher than the OW value.

Pesticide	Most Sensitive OPP ALB (Year published, species)	OW Illustrative ALC example (# of MDRs filled, magnitude relative to ALB)	OW Modified HC ₀₅ (# of MDRs filled, # of genera available, magnitude relative to ALB)
Atrazine ¹	< 1 µg/L (2016; Oscillatoria lutea; nonvascular plant)	5.7 μg/L (illustrative ALC example calculated for this analysis; 8 MDRs filled, 0.18X)	NA

¹No 304(a) ALC recommendation available but has sufficient data to develop an illustrative ALC example for the purposes of these analyses only.

Figure 1 shows a genus-level sensitivity distribution for the atrazine dataset. Major taxonomic groups are delineated by different symbols, and invertebrate genera are identified by name. Lines denoting the OPP acute benchmark values and the illustrative OW ALC example.

Figure 1. Atrazine genus-level acute SD.

Symbols represent Genus Mean Acute Values (GMAVs) calculated using all available data from an Office of Water ECOTOX search in 2021 and the Office of Pesticide Programs (OPP) registration review document for atrazine (U.S. EPA 2016).

2.1.1.2 Atrazine References

MRID 23544. Ramirea Torrest, A.M, and L.M. O'Flaherty. 1976. Influence of pesticides on Chlorella, Chlorococcum, Stigeoclonium (Chlorophyceae), Tribonema, Vaucheria (Xanthophyceae) and Oscillatoria (Cyanophyceae). Phycoleia 15(1): 376-387.

MRID 24377. U.S. Environmental Protection Agency. 1976. Chronic toxicity of atrazine to selected aquatic invertebrates and fishes. Environmental Research Laboratory, Office of Research and Development, USEPA, Duluth, MN. EPA -600/3-76-047

MRID 24716. Atrazine Acute toxicity in Rainbow Trout ----SR. 00625-023-1; 230303-0-P.

MRID 41065203. Hughes, J. S. 1986. The toxicity of atrazine, Lot No. FL-850612 to four species of aquatic plants. Unpublished study conducted by Malcolm Pirnie, Inc, White Plains, NY. Laboratory Study No. 267-28-1100. Sponsored by Agricultural Division Ciba-Geigy, Greensboro, NC. Study completed March 17, 1986.

MRID 42547103. Dionne, E. 1992. Chronic Toxicity to the Fathead Minnow (Pimephales promelas) during a full life-cycle exposure. Unpublished study conducted by Springborn Laboratories, Inc., Wareham, MA. Laboratory report No. 92-7-4324. Sponsored by Agricultural Division, Ciba-Geigy Corporation, Greensbore, NC.

MRID 43074802. Hobert, J.R. 1993. Toxicity to the Freshwater Green Alga, Selenastrum carpricornutum. Unpublished study conducted by Springborn Laboratories, Inc., Wareham, MA. Study No. 93-4-4751. Sponsored by Ciba Plant Protection, Ciba-Geigy Corporation, Greensboro, NC. Study completed November 15, 1993.

MRID 43074803. Hoberg, J.R. 1983. Atrazine Technical – Toxicity to Duckweed (Lemna gibba). Unpublished study conducted by Springborn Laboratories, Inc, Wareham, MA. Study No. 93-11-5053. Sponsored by Ciba Plant Protection, Ciba-Geigy Corp, Greensboro, NC. Study completed December 21, 1983.

MRID 80976 associated with MRID 230303. Beliles, R.P., and W.J., Jr. Scott. 1965. Atrazine Safety Evaluations on Fish and Wildlife (Bobwhite Quail, Mallard Ducks, Rainbow Trout, Sunfish, and Goldfish). Prepared by Woodard Res. Corp., Submitted by Geigy Chem. Co., Ardsley, NY (MRID No.00059214), 9 p. ECOREF #80976

Abdel-Hamid, M.I.. 1996. Development and Application of a Simple Procedure for Toxicity Testing Using Immobilized Algae. Water Sci. Technol. 33(6): 129-138. ECOREF #69584

Bathe, R., K. Sachsse, L. Ullmann, W.D. Hormann, F. Zak, and R. Hess. 1975. The Evaluation of Fish Toxicity in the Laboratory. Proc. Eur. Soc. Toxicol. 16:113-124. ECOREF #7199

Baxter, L., R.A. Brain, L. Lissemore, K.R. Solomon, M.L. Hanson, and R.S. Prosser. 2016. Influence of Light, Nutrients, and Temperature on the Toxicity of Atrazine to the Algal Species Raphidocelis subcapitata: Implications for the Risk Assessment of Herbicides. Ecotoxicol. Environ. Saf. 132:250-259. ECOREF #174384

Beliles, R.P., and W.J.,Jr. Scott. 1965. Atrazine Safety Evaluations on Fish and Wildlife (Bobwhite Quail, Mallard Ducks, Rainbow Trout, Sunfish, and Goldfish). Prepared by Woodard Res. Corp., Submitted by Geigy Chem. Co., Ardsley, NY (MRID No.00059214): 9 p. ECOREF #80976.

Berard, A., U. Dorigo, I. Mercier, K. Becker-Van Slooten, D. Grandjean, and C. Leboulanger. 2003. Comparison of the Ecotoxicological Impact of the Triazines Irgarol 1051 and Atrazine on Microalgal Cultures and Natural Microalgal Communities in Lake Geneva. Chemosphere 53(8): 935-944. ECOREF #72626.

Birge, W.J., J.A. Black, A.G. Westerman, and B.A. Ramey. 1983. Fish and Amphibian Embryos - a Model System for Evaluating Teratogenicity. Fundam. Appl. Toxicol. 3:237-242. ECOREF #19124.

Brain, R.A., J. Hoberg, A.J. Hosmer, and S.B. Wall. 2012. Influence of Light Intensity on the Toxicity of Atrazine to the Submerged Freshwater Aquatic Macrophyte Elodea canadensis. Ecotoxicol. Environ. Saf. 79:55-61. ECOREF #160884.

Bringolf, R.B., W.G. Cope, C.B. Eads, P.R. Lazaro, M.C. Barnhart, and D. Shea. 2007. Acute and Chronic Toxicity of Technical-Grade Pesticides to Glochidia and Juveniles of Freshwater Mussels (Unionidae). Environ. Toxicol. Chem. 26(10): 2086-2093. ECOREF #100597.

Bringolf, R.B., W.G. Cope, M.C. Barnhart, S. Mosher, P.R. Lazaro, and D. Shea. 2007. Acute and Chronic Toxicity of Pesticide Formulations (Atrazine, Chlorpyrifos, and Permethrin) to Glochidia and Juveniles of Lampsilis siliquoidea. Environ. Toxicol. Chem. 26(10): 2101-2107. ECOREF #99469.

Brodeur, J.C., G. Svartz, C.S. Perez-Coll, D.J.G. Marino, and J. Herkovits. 2009. Comparative Susceptibility to Atrazine of Three Developmental Stages of Rhinella arenarum and Influence on Metamorphosis: Non-Monotonous Acceleration of the Time to Climax and Delayed Tail Resorption. Aquat. Toxicol. 91(2): 161-170. ECOREF #112588.

Brooke, L.T. 1991. Results of Freshwater Exposures with the Chemicals Atrazine, Biphenyl, Butachlor, Carbaryl, Carbazole, Dibenzofuran, 3,3'-Dichlorobenzidine, Dichlorvos, 1,2-Epoxyethylbenzene (Styrene Oxide), Isophorone, Isopropalin, Ox. Center for Lake Superior Environmental Studies, University of Wisconsin, Superior, WI:110. ECOREF #17138.

Burrell, R.E., W.E. Inniss, and C.I. Mayfield. 1985. Detection and Analysis of Interactions Between Atrazine and Sodium Pentachlorophenate with Single and Multiple Algal-Bacterial Populations. Arch. Environ. Contam. Toxicol. 14:167-177. ECOREF #11424.

Choung, C.B., R.V. Hyne, M.M. Stevens, and G.C. Hose. 2010. A Low Concentration of Atrazine does not Influence the Acute Toxicity of the Insecticide Terbufos or Its Breakdown Products to Chironomus tepperi. Ecotoxicology 19(8): 1536-1544. ECOREF #153818.

Davis, D.E. 1980. Effects of Herbicides on Submerged Seed Plants. Completion Rep.Project A-067-ALA, Office of Water Res.and Technol., Washington, DC:19 p. ECOREF #9159.

Della Vechia, J.F., C. Cruz, A.F. Silva, W.R., Jr. Cerveira, and N. Garlich. 2016. Macrophyte Bioassay Applications for Monitoring Pesticides in the Aquatic Environment. Planta Daninha 34(3): 597-603. ECOREF #176903.

Demirci, K. Guven, D. Asma, S. Oqut, and P. Ugurlu. 2018. Effects of Endosulfan, Thiamethoxam, and Indoxacarb in Combination with Atrazine on Multi-Biomarkers in Gammarus kischineffensis. Ecotoxicol. Environ. Saf. 147:749-758. ECOREF #183521. Dionne, E. 1992. Chronic Toxicity to the Fathead Minnow (Pimephales promelas) During a Full Life-Cycle Exposure. Lab. Study #92-7-4324, CIBA-GEIGY Corp., Greensboro, NC:439 p. ECOREF #78794.

Ebke, K.P., C. Felten, and L. Doren. 2013. Impact of Heterophylly on the Sensitivity of Myriophyllum aquaticum Biotests. Environ. Sci. Eur. 25(6): 9 p. ECOREF #164771.

Fai, P.B., A. Grant, and B. Reid. 2007. Chlorophyll a Fluorescence as a Biomarker for Rapid Toxicity Assessment. Environ. Toxicol. Chem. 26(7): 1520-1531. ECOREF #102060.

Fairchild, J., S. Ruessler, M. Nelson, and P. Haverland. 1994. Bioavailability and Toxicity of Agricultural Chemicals in Runoff from MSEA Sites: Potential Impacts on Non-Target Aquatic Organisms: An Aquatic Hazard Assessment of Four Herbicides Using Six Species of Algae and Five S. Final report for IAG DW14935600-01-2. Environmental Research Laboratory, U.S. Environmental Protection Agency, Duluth, MN:123 p. ECOREF #152770.

Fairchild, J.F., D.S. Ruessler, and A.R. Carlson. 1998. Comparative Sensitivity of Five Species of Macrophytes and Six Species of Algae to Atrazine, Metribuzin, Alachlor, and Metolachlor. Environ. Toxicol. Chem. 17(9): 1830-1834. ECOREF #19461.

Fairchild, J.F., D.S. Ruessler, P.S. Haverland, and A.R. Carlson. 1997. Comparative Sensitivity of Selenastrum capricornutum and Lemna minor to Sixteen Herbicides. Arch. Environ. Contam. Toxicol. 32(4): 353-357. ECOREF #18093.

Forney, D.R., and D.E. Davis. 1981. Effects of Low Concentrations of Herbicides on Submersed Aquatic Plants. Weed Sci. 29:677-685. ECOREF #4634.

Freitas, E.C., and O. Rocha. 2011. Acute Toxicity Tests with the Tropical Cladoceran Pseudosida ramosa: The Importance of Using Native Species as Test Organisms. Arch. Environ. Contam. Toxicol. 60(2): 241-249. ECOREF #153837.

Gala, W.R., and J.P. Giesy. 1990. Flow Cytometric Techniques to Assess Toxicity to Algae. ASTM Spec. Tech. Publ. 13:237-246. ECOREF #18933.

Garrett, D.C. 2004. Effects of Methanol, Atrazine, and Copper on the Ultrastructure of Pseudokirchneriella subcapitata (Selenastrum capricornutum). Ph.D. Thesis, University of North Texas, Denton, TX:192 p. ECOREF #82748.

Geyer, H., I. Scheunert, and F. Korte. 1985. The Effects of Organic Environmental Chemicals on the Growth of the Alga Scenedesmus subspicatus: A Contribution to Environmental Biology. Chemosphere 14(9): 1355-1369. ECOREF #11677.

Gunkel, G., and H. Kausch. 1976. Acute Toxicity of Atrazine (S-Triazine) on Coregonus fera Under Starvation Conditions. Arch. Hydrobiol. Suppl. 48(2): 207-234. ECOREF #7792.

Gutierrez, M.F., A.M. Gagneten, and J.C. Paggi. 2013. Acute and Behavioral Sensitivity of Mesocyclops longisetus to Atrazine and Endosulfan Formulations Under Predation Pressure. Water Air Soil Pollut. 224(1): 9 p. ECOREF #164050.

He, H., J. Yu, G. Chen, W. Li, J. He, and H. Li. 2012. Acute Toxicity of Butachlor and Atrazine to Freshwater Green Alga Scenedesmus obliquus and Cladoceran Daphnia carinata. Ecotoxicol. Environ. Saf. 80:91-96. ECOREF #160885.

Hoberg, J.R. 1991. Atrazine Technical - Toxicity to the Freshwater Green Alga Selenastrum capricornutum. Final SLI Rep.No.91-1-3600, Springborn Lab. Inc., Environ. Sci. Div., Wareham, MA: 50 p. ECOREF #69631.

Hoberg, J.R. 1993. Atrazine Technical - Toxicity to the Freshwater Green Alga, (Selenastrum capricornutum). Final SLI Rep.No.93-4-4751, Springborn Lab. Inc., Environ. Sci. Div., Wareham, MA: 63 p. ECOREF #69630.

Hughes, J.S., J.S. Reed, and S.K. Krishnaswami. 1986. The Toxicity of Atrazine, Lot No. FL-850612, to Four Species of Aquatic Plants. Final Rep. from Malcom Pirnie, Inc.to Giba-Geigy Corp., Greensboro, NC: MRID No.410652-03, U.S.EPA, Duluth, MN, 71 p. ECOREF#103781.

James-Yi, S.A. 2008. Systematics, Ecology, and Distribution of Water Mites (Acari: Parasitengonina). Ph.D. Thesis, University of Illinois at Urbana-Champaign, Champaign, IL:181 p. ECOREF #153867.

Johnson, I.C., A.E. Keller, and S.G. Zam. 1993. A Method for Conducting Acute Toxicity Tests with the Early Life Stages of Freshwater Mussels. ASTM Spec. Tech. Publ.: 381-396 ECOREF #50679.

Kallqvist, T., and R. Romstad. 1994. Effects of Agricultural Pesticides on Planktonic Algae and Cyanobacteria -- Examples of Interspecies Sensitivity Variations. Norw. J. Agric. Sci. Suppl. 13:117-131. ECOREF #16010.

Kerby, J.L. 2006. Pesticide Effects on Amphibians: A Community Ecology Perspective. Ph.D. Thesis, University of California, Davis:146 p. ECOREF #118706.

Khoshnood, Z., S. Jamili, S. Khodabandeh, A. Mashinchian Moradi, and A.A. Motallebi Moghanjoghi. 2014. Histopathological Effects and Toxicity of Atrazine Herbicide in Caspian Kutum, Rutilus frisii kutum, Fry. Iran. J. Fish. Sci. 13(3): 702-718. ECOREF #171062.

Kirby, M.F., and D.A. Sheahan. 1994. Effects of Atrazine, Isoproturon, and Mecoprop on the Macrophyte Lemna minor and the Alga Scenedesmus subspicatus. Bull. Environ. Contam. Toxicol. 53(1): 120-126. ECOREF #13695.

Knezevic, V., T. Tunic, P. Gajic, P. Marjan, D. Savic, D. Tenji, and I. Teodorovic. 2016. Getting More Ecologically Relevant Information from Laboratory Tests: Recovery of Lemna minor After Exposure to Herbicides and Their Mixtures. Arch. Environ. Contam. Toxicol. 71(4): 572-588. ECOREF #174524.

Kreutz, L.C., L.J.G. Barcellos, T.O. Silva, D. Anziliero, D. Martins, M. Lorenson, A. Marteninghe, and L.B. Da Silva. 2008. Acute Toxicity Test of Agricultural Pesticides on Silver Catfish (Rhamdia quelen) Fingerlings. Ciencia Rural 38(4): 1050-1055. ECOREF #111938.

Mayer, P., J. Frickmann, E.R. Christensen, and N. Nyholm. 1998. Influence of Growth Conditions on the Results Obtained in Algal Toxicity Tests. Environ. Toxicol. Chem. 17(6): 1091-1098. ECOREF #19285.

McGregor, E.B., K.R. Solomon, and M.L Hanson. 2008. Effects of planting system design on the toxicological sensitivity of Myriophyllum spicatum and Elodea canadensis to atrazine. Chemosphere 73(3): 249-260. https://doi.org/10.1016/j.chemosphere.2008.06.045.

McNamara, P.C. 1991. Atrazine Technical - Acute Toxicity to Midge (Chironomus tentans) Under Flow-Through Conditions. SLI Report No.91-2-3649, Springborn Laboratories Inc., Wareham, MA: 61 p. ECOREF #156062.

Mofeed, J., and Y.Y. Mosleh. 2013. Toxic Responses and Antioxidative Enzymes Activity of Scenedesmus obliquus Exposed to Fenhexamid and Atrazine, Alone and in Mixture. Ecotoxicol. Environ. Saf. 95: 234-240. ECOREF #164777.

Neskovic, N.K., I. Elezovic, V. Karan, V. Poleksic, and M. Budimir.1993. Acute and Subacute Toxicity of Atrazine to Carp (Cyprinus carpio L.). Ecotoxicol. Environ. Saf. 25: 173-182. ECOREF #6681.

Okamura, H., I. Aoyama, D. Liu, R.J. Maguire, G.J. Pacepavicius, and Y.L. Lau. 2000. Fate and Ecotoxicity of the New Antifouling Compound Irgarol 1051 in the Aquatic Environment. Water Res. 34(14): 3523-3530. ECOREF #56747.

Oris, J.T., R.W. Winner, and M.V. Moore. 1991. A Four-Day Survival and Reproduction Toxicity Test for Ceriodaphnia dubia. Environ. Toxicol. Chem. 10(2): 217-224. ECOREF #3590.

Pan, H., X. Li, X. Xu, and S. Gao. 2009. Phytotoxicity of Four Herbicides on Ceratophyllum demersum, Vallisneria natans and Elodea nuttallii. J. Environ. Sci. 21:307-312. ECOREF #112909.

Pantani, C., G. Pannunzio, M. De Cristofaro, A.A. Novelli, and M. Salvatori. 1997. Comparative Acute Toxicity of Some Pesticides, Metals, and Surfactants to Gammarus italicus Goedm. and Echinogammarus tibaldii Pink. and Stock (Crustacea: Amphipoda). Bull. Environ. Contam. Toxicol. 59(6): 963-967. ECOREF #18621.

Perez, J., I. Domingues, A.M.V.M. Soares, and S. Loureiro. 2011. Growth Rate of Pseudokirchneriella subcapitata Exposed to Herbicides Found in Surface Waters in the Alqueva Reservoir (Portugal): A Bottom-up Approach Using Binary Mixtures. Ecotoxicology 20(6): 1167-1175. ECOREF #165277.

Phyu, Y.L., M.St.J. Warne, and R.P. Lim. 2004. Toxicity of Atrazine and Molinate to the Cladoceran Daphnia carinata and the Effect of River Water and Bottom Sediment on Their Bioavailability. Arch. Environ. Contam. Toxicol. 46(3): 308-315. ECOREF #74233.

Ralston-Hooper, K., J. Hardy, L. Hahn, H. Ochoa-Acuna, L.S. Lee, R. Mollenhauer, and M.S. Sepulveda. 2009. Acute and Chronic Toxicity of Atrazine and Its Metabolites Deethylatrazine and Deisopropylatrazine on Aquatic Organisms. Ecotoxicology 18(7): 899-905. ECOREF #118745.

Rentz, N.C. 2009. Evaluating the Field and Laboratory Efficacy of a Toxicity Test for the Aquatic Macrophyte Elodea canadensis. M.S. Thesis, University of Manitoba, Canada: 219 p., ECOREF #154073.

Roshon, R.D. 1997. A Toxicity Test for the Effects of Chemicals on the Non-Target Submersed Aquatic Macrophyte, Myriophyllum sibiricum Komarov. Ph.D. Thesis, University of Guelph, Ontario, Canada:464 p. ECOREF #74985.

Saka, M., N. Tada, and Y. Kamata. 2018. Chronic Toxicity of 1,3,5-Triazine Herbicides in the Postembryonic Development of the Western Clawed Frog Silurana tropicalis. Ecotoxicol. Environ. Saf. 147: 373-381. ECOREF #178499.

Seguin, F., C. Leboulanger, F. Rimet, J.C. Druart, and A. Berard. 2001. Effects of Atrazine and Nicosulfuron on Phytoplankton in Systems of Increasing Complexity. Arch. Environ. Contam. Toxicol. 40(2): 198-208. ECOREF #62246.

Sengupta, N., E.J. Litoff, and W.S. Baldwin. 2015. The HR96 Activator, Atrazine, Reduces Sensitivity of D. magna to Triclosan and DHA. Chemosphere 128: 299-306. ECOREF #170827.

Stratton, G.W. 1984. Effects of the Herbicide Atrazine and Its Degradation Products, Alone and in Combination, on Phototrophic Microorganisms. Arch. Environ. Contam. Toxicol. 13(1): 35-42. ECOREF #11659.

Taylor, E.J., S.J. Maund, and D. Pascoe. 1991. Toxicity of Four Common Pollutants to the Freshwater Macroinvertebrates Chironomus riparius Meigen (Insecta: Diptera) and Gammarus pulex (L.). Arch. Environ. Contam. Toxicol. 21: 371-376. ECOREF #5023.

Teodorovic, I., V. Knezevic, T. Tunic, M. Cucak, J.N. Lecic, A. Leovac, and I.I. Tumbas. 2012. Myriophyllum aquaticum Versus Lemna minor: Sensitivity and Recovery Potential After Exposure to Atrazine. Environ. Toxicol. Chem. 31(2): 417-426. ECOREF #160947.

Tunic, T., V. Knezevic, U. Kerkez, A. Tubic, D. Sunjka, S. Lazic, D. Brkic, and I. Teodorovic. 2015. Some Arguments in Favor of a Myriophyllum aquaticum Growth Inhibition Test in a Water-Sediment System as an Additional Test in Risk Assessment of Herbicides. Environ. Toxicol. Chem. 34: 2104-2115. ECOREF #170972.

Turbak, S.C., S.B. Olson, and G.A. McFeters. 1986. Comparison of Algal Assay Systems for Detecting Waterborne Herbicides and Metals. Water Res. 20(1): 91-96. ECOREF #11780.

U.S. Environmental Protection Agency. 1992. Pesticide Ecotoxicity Database (Formerly: Environmental Effects Database (EEDB)). Environmental Fate and Effects Division, U.S.EPA, Washington, D.C. ECOREF #344.

U.S. Environmental Protection Agency. 2024. Draft Comparison of Aquatic Life Protective Values Developed for Pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Clean Water Act (CWA). EPA-820-D-24-002.

Velisek, J., A. Kouba, and A. Stara. 2013. Acute Toxicity of Triazine Pesticides to Juvenile Signal Crayfish (Pacifastacus leniusculus). Neuroendocrinol. Lett. 34(2): 31-36. ECOREF #167249.

Versteeg, D.J. 1990. Comparison of Short- and Long-Term Toxicity Test Results for the Green Alga, Selenastrum capricornutum. ASTM Spec. Tech. Publ.: 40-48. ECOREF #17639.

Wan, M.T., C. Buday, G. Schroeder, J. Kuo, and J. Pasternak. 2006. Toxicity to Daphnia magna, Hyalella azteca, Oncorhynchus kisutch, Oncorhynchus mykiss, Oncorhynchus tshawytscha, and Rana catesbeiana of Atrazine, Metolachlor, Simazine, and Their Formulated Products. Bull. Environ. Contam. Toxicol. 76(1): 52-58. ECOREF #89626.

Wang, Y., L. Lv, Y. Yu, G. Yang, Z. Xu, Q. Wang, and L. Cai. 2017. Single and Joint Toxic Effects of Five Selected Pesticides on the Early Life Stages of Zebrafish (Denio rerio). Chemosphere 170: 61-67. ECOREF #174503.

Wrubleswski, J., F.W., Jr. Reichert, L. Galon, P.A. Hartmann, and M.T. Hartmann. 2018. Acute and Chronic Toxicity of Pesticides on Tadpoles of Physalaemus cuvieri (Anura, Leptodactylidae). Ecotoxicology 27(3): 360-368. ECOREF #179653.

Xing, H., T. Liu, Z. Zhang, X. Wang, and S. Xu. 2015. Acute and Subchronic Toxic Effects of Atrazine and Chlorpyrifos on Common Carp (Cyprinus carpio L.): Immunotoxicity Assessments. Fish Shellfish Immunol. 45: 327-333. ECOREF #170959.

Yan, H., S. Huang, and M. Scholz. 2015. Kinetic Processes of Acute Atrazine Toxicity to Brachydanio rerio in the Presence and Absence of Suspended Sediments. Water Air Soil Pollut. 226(3): 13 p. ECOREF #170833.

2.1.2 Comparison of Aquatic Life Toxicity Values for Propazine: Data Sources and Considerations

Data used in the *Draft Comparison of Aquatic Life Protective Values Developed for Pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Clean Water Act (CWA)* (U.S. EPA 2024) were obtained from the Office of Pesticide Programs (OPP) registration review document for propazine (U.S. EPA 2016) and an EPA ECOTOX Knowledgebase search conducted in 2021.

2.1.2.1 Propazine Acute Toxicity Data

Acute data for propazine are shown in Table 1. Ranked invertebrate GMAVs from all data sources are listed in Table 2.

OW MDR ^a	Species	LC50	SMAV	GMAV	Source	MRID/ECOTOX REF
Plant	Blue Green Algae (Anabaena flos-aquae)	160	160	160	OPP / ECOTOX	44287312 / 344
Plant	Duckweed (Lemna gibba)	100	100	100	OPP/ ECOTOX	44287309 / 344
В	Bluegill Sunfish (Lepomis macrochirus)	>4380	>4440	>4440	OPP	48036203
		>4500			OPP / ECOTOX	178499
Plant	Freshwater Diatom (Navicula pelliculosa)	24.8	24.8	24.8	OPP/ ECOTOX	44287310 / 344
А	Rainbow Trout (Oncorhynchus mykiss)	5000	9083	9083	OPP	47452301
		16500			OPP	34123
Plant	Green Algae (Raphidocelis subcapitata)	29	29	29	OPP / ECOTOX	44287308 / 344
С	Western Clawed Frog (Xenopus tropicalis)	>5200	>5200	>5200	ECOTOX	178499

Table 1. Acute toxicity data of propazine to freshwater aquatic organisms. (MDR specifies OW minimum data requirements under the Guidelines.)

^a OW MDR Groups – Freshwater:

A. the family Salmonidae in the class Osteichthyes

- B. a second family in the class Osteichthyes, preferably a commercially or recreationally important warmwater species (e.g., bluegill, channel catfish, etc.)
- C. a third family in the phylum Chordata (may be in the class Osteichthyes or may be an amphibian, etc.)
- D. a planktonic crustacean (e.g., cladoceran, copepod, etc.)
- E. a benthic crustacean (e.g., ostracod, isopod, amphipod, crayfish, etc.)
- F. an insect (e.g., mayfly, dragonfly, damselfly, stonefly, caddisfly, mosquito, midge, etc.)
- G. a family in a phylum other than Arthropoda or Chordata (e.g., Rotifera, Annelida, Mollusca, etc.)
- H. a family in any order of insect or any phylum not already represented.

OPP Acute Benchmark Values

The OPP non-vascular plant benchmark value for propazine is 24.8 μ g/L, which is the LC₅₀ for *N. pelliculosa*. The OPP vascular plant benchmark value is 100 μ g/L, which is the LC₅₀ for *L. gibba*.

The OPP invertebrate acute benchmark value is >2,660 μ g/L, which is $\frac{1}{2}$ the LC₅₀ for *D. magna*.

The OPP fish acute benchmark value is >2,190 μ g/L, which is $\frac{1}{2}$ the LC₅₀ for *L. macrochirus*.

GLI Tier II Acute Value Calculation

The acceptable acute dataset for propazine fulfills three of the eight MDRs, corresponding to the use of a Secondary Acute Factor (SAF) of 8. Applying the SAF to the lowest, most sensitive GMAV regardless of taxa (i.e., 28.4 μ g/L for the freshwater diatom (*Navicula pelliculosa*)), the calculated Secondary Acute Value (SAV) is 3.1 μ g/L. The Secondary Maximum Criterion (SMC), which is calculated as half the SAV, is 1.55 μ g/L. Detailed calculations for the SMC are shown below:

$$SAV = \frac{\text{Lowest GMAV}}{\text{SAF}}$$
$$SAV = \frac{28.4}{8} = 3.1 \,\mu g/L$$
$$SMC = \frac{\text{SAV}}{2}$$
$$SMC = \frac{3.55}{2} = 1.55 \,\mu g/L$$

Modified Acute HC05

The genus-level modified acute HC_{05} calculated following the U.S. EPA (1985) methodology for the four most sensitive genera regardless of taxa (Table 2) in the propazine dataset was 8.468 μ g/L (Table 3).

Genus	Species	SMAV	GMAV	GMAV Rank	MDR Group
Oncorhynchus	mykiss	9,083	9,083	3	А
Xenopus	tropicalis	>5,200	>5,200	2	С
Lepomis	macrochirus	>4,440	>4,440	1	В
Anabaena	flos-aquae	160	160	4	Plant
Lemna	gibba	100	100	3	Plant
Raphidocelis	subcapitata	29	29	2	Plant
Navicula	pelliculosa	24.8	24.8	1	Plant

Table 2. Propazine SMAVs and GMAVs (µg/L).

N	Rank	GMAV	ln(GMAV)	ln(GMAV) ²	P=R/(N+1)	sqrt(P)
7	4	160	5.075	25.76	0.5000	0.7071
	3	100	4.605	21.21	0.3750	0.6124
	2	29	3.367	11.34	0.2500	0.5000
	1	24.8	3.211	10.31	0.1250	0.3536
	Sum:		16.26	68.6	1.250	2.173
	$S^2 =$	36.39				
	L =	0.787				
	A =	2.136				
	$\mathbf{FAV} =$	8.468				
	CMC =	4.2				

Table 3. Modified acute HC₀₅ for propazine calculated following the U.S. EPA (1985) methodology.

Table 4. Summary and comparison of acute values for propazine.

Magnitude relative to ALB is the OPP ALB/OW value, the ratio for the OPP value/OW value for each value comparison. A ratio >1 indicates the OPP value is higher than the OW value.

Pesticide	Most Sensitive OPP ALB (Year published, species)	OW GLI Tier II value (# of MDRs filled, magnitude relative to ALB)	OW Modified HC ₀₅ (# of MDRs filled, # of genera available, magnitude relative to ALB)
Propazine	24.8 μg/L (2022; <i>Navicula pelliculosa;</i> nonvascular plant)	1.55 μg/L (GLI Tier II; 4 MDRs filled*, 16X)	4.2 μg/L (3 MDRs, 7 genera, 5.9X)

Figure 1 shows a genus-level sensitivity distribution for the propazine dataset. Major taxonomic groups are delineated by different symbols. Lines denoting the OPP acute benchmark values, GLI Tier II calculated acute value, and modified HC_{05} value are included.

Figure 1. Propazine genus-level acute SD.

Symbols represent Genus Mean Acute Values (GMAVs) calculated using all available data from an Office of Water ECOTOX search in 2021 and the Office of Pesticide Programs (OPP) registration review document for propazine (U.S. EPA 2016).

2.1.2.2 Propazine Chronic Toxicity Data

Data Sources and Considerations

Chronic toxicity data for propazine were consolidated by OW and combined with data from OPP's registration review document for acephate (U.S. EPA 2016). The final chronic propazine dataset consisted of NOECs/LOEC for seven species (Table 5).

OW MDR	Species	NOEC	LOEC	SMCV	GMCV	Source	MRID/ECOTOX REF
Plant	Blue Green Algae (Anabaena flos-aquae)	68		68	68	OPP / ECOTOX	44287312 / 344
D	Water Flea (Daphnia magna)	47	91	65.40	65.40	OPP/ ECOTOX	44327602 / 344
			370			ECOTOX	344
Plant	Duckweed (Lemna gibba)	22		22	22	OPP/ ECOTOX	44287309 / 344
Plant	Freshwater Diatom (Navicula pelliculosa)	6.5		6.5	6.5	OPP/ ECOTOX	44287310 / 344
В	Fathead minnow (Pimephales promelas)	560	1230	829.9	829.9	OPP	48036205
Plant	Green Algae (Raphidocelis subcapitata)	12		12	12	OPP / ECOTOX	44287308 / 344
С	Western Clawed Frog (Xenopus tropicalis)	101.7	1036.5	324.7	324.7	ECOTOX	178499

(MDR specifies OW minimum data requirements under the Guidelines.)

^a OW MDR Groups – Freshwater:

- A. the family Salmonidae in the class Osteichthyes
- B. a second family in the class Osteichthyes, preferably a commercially or recreationally important warmwater species (e.g., bluegill, channel catfish, etc.)
- C. a third family in the phylum Chordata (may be in the class Osteichthyes or may be an amphibian, etc.)
- D. a planktonic crustacean (e.g., cladoceran, copepod, etc.)
- E. a benthic crustacean (e.g., ostracod, isopod, amphipod, crayfish, etc.)
- F. an insect (e.g., mayfly, dragonfly, damselfly, stonefly, caddisfly, mosquito, midge, etc.)
- G. a family in a phylum other than Arthropoda or Chordata (e.g., Rotifera, Annelida, Mollusca, etc.)
- H. a family in any order of insect or any phylum not already represented.

OPP Chronic Benchmark Values

The OPP nonvascular plant benchmark value for propazine is 6.5 μ g/L, which is the NOEC for *N. pelliculosa*. The OPP vascular plant benchmark value is 22 μ g/L, which is the NOEC for *L. gibba*.

The OPP invertebrate chronic benchmark value is 47 μ g/L, which is the NOEC for *Daphnia magna*.

The OPP fish chronic benchmark value is 560 μ g/L, which is the NOEC for *Pimephales* promelas.

GLI Tier II Chronic Value Calculation

Paired quantitative acute and chronic toxicity data were available for the frog *Xenopus tropicalis* allowing for the calculation of one ACR. Per the GLI Tier II methodology, the default value of 18 was used to fulfill the remaining two ACRs. The resulting X. tropicalis ACR is 16.01, and the final SACR is 17.31. Dividing the SAV of 3.100 μ g/L by the SACR of 17.31 results in a Secondary Continuous Value of 0.1791 μ g/L, and a Secondary Continuous Concentration of 0.18 μ g/L.

Detailed calculations for the SCV are shown below:

SACR = Geometric Mean of the ACRs
SACR =
$$\sqrt[3]{16.01 * 18 * 18} = 17.13$$

SCV = $\frac{SAV}{SACR}$
SCV = $\frac{3.100}{17.13} = 0.18 \,\mu g/L$

Modified Chronic HC05

The genus-level modified chronic HC05 calculated following the U.S. EPA (1985) methodology for the four most sensitive genera regardless of taxa (Table 6) in the propazine dataset was 2.3 μ g/L (Table 7).

Genus	Species	SMCV	GMCV	GMCV Rank	OW MDR Group
Pimephales	promelas	829.9	829.9	7	В
Xenopus	tropicalis	324.7	324.7	6	С
Anabaena	flos-aquae	68	68	5	Plant
Daphnia	magna	65.40	65.40	4	D
Lemna	gibba	22	22	3	Plant
Raphidocelis	subcapitata	12	12	2	Plant
Navicula	pelliculosa	6.5	6.5	1	Plant

Table 6. Propazine SMCVs and GMCVs (µg/L).

^a OW MDR Groups – Freshwater:

A. the family Salmonidae in the class Osteichthyes

B. a second family in the class Osteichthyes, preferably a commercially or recreationally important warmwater species (e.g., bluegill, channel catfish, etc.)

- C. a third family in the phylum Chordata (may be in the class Osteichthyes or may be an amphibian, etc.)
- D. a planktonic crustacean (e.g., cladoceran, copepod, etc.)

E. a benthic crustacean (e.g., ostracod, isopod, amphipod, crayfish, etc.)

F. an insect (e.g., mayfly, dragonfly, damselfly, stonefly, caddisfly, mosquito, midge, etc.)

G. a family in a phylum other than Arthropoda or Chordata (e.g., Rotifera, Annelida, Mollusca, etc.)

H. a family in any order of insect or any phylum not already represented.

Table 7. Modified chronic HC₀₅ for propazine calculated following the U.S. EPA (1985) methodology.

N	Rank	GMCV	ln(GMCV)	ln(GMCV) ²	P=R/(N+1)	sqrt(P)
7	4	65.40	4.181	17.48	0.5000	0.7071
	3	22	3.091	9.55	0.3750	0.6124
	2	12	2.485	6.17	0.2500	0.5000
	1	6.5	1.872	3.50	0.1250	0.3536
	Sum:		11.63	36.7	1.250	2.173
	$S^2 =$	41.82				
	L =	-0.606				
	A =	0.840				
	FCV =	2.316				
	CCC=	2.3				

Table 8. Summary and comparison of chronic values for propazine.

Magnitude relative to ALB is the OPP ALB/OW value, the ratio for the OPP value/OW value for each value comparison.

Pesticide	Most Sensitive OPP ALB (Year published and species)	OW GLI Tier II value (# of ACRs filled, magnitude relative to ALB)	OW Modified HC05 (# of MDRs filled, # of genera available, magnitude relative to ALB)
Propazine	6.5 μg/L (2022; <i>Navicula pelliculosa;</i> nonvascular plant)	0.18 μg/L (GLI Tier II; 1 ACR filled, 36X)	2.3 μg/L (3 MDRs, 7 genera, 2.8X)

Figure 2 shows a chronic genus-level sensitivity distribution for the propazine dataset. Major taxonomic groups are delineated by different symbols. Lines denoting the OPP chronic benchmark values, GLI Tier II calculated chronic value, and modified HC_{05} value are included.

Figure 2. Propazine genus-level chronic SD.

Symbols represent Genus Mean Chronic Values (GMCVs) calculated using all available data from an Office of Water ECOTOX search in 2021 and the Office of Pesticide Programs (OPP) registration review document for propazine (U.S. EPA 2016).

2.1.2.3 Propazine References

MRID 34123. Woodard Research Corporation. 1980. Propazine Acute Toxicity in Rainbow Trout 2402-094-03/000333-5-C.

MRID 44287308. Hicks, S.L., J.B. Bussard, and D.W. Gledhill. 1995. Acute toxicity to propazine to Selenastrum capricornutum Printz. Unpublished study conducted by ABC Laboratories, Columbina, Missouri. Final Report No 41962. Study sponsored by Griffin Corporation, Valdosta, GA. Study completed April 19, 1995.

MRID 44287309. Hicks, S.L., D.W. Gledhill, and J. Veltri. 1995. 14-day Statis Toxicity of Propazine to Lemna gibba G3. Unpublished study conducted by ABC Laboratories, Inc. Columbia, Missouri. Final report No 41963. Sponsored by Griffin Corporation, Valdosta, GA. Study completed May 24, 1995.

MRID 44287310. Hicks, S.L. and D.W. Gledhill. 1995. Acute toxicity of propazine to Navicula pelliculosa. Unpublished study conducted by ABC Laboratories, Inc., Columbia, Missouri. Final Report No. 41966. Study sponsored by Griffin Corporation, Valdosta, GA. Study completed August 30, 1995.

MRID 44287312. Gledhill, D.W., and J.M. Bussard, 1995. Acute toxicity of propazine to Anabaena flos-aquae. Unpublished study conducted by ABC Laboratories, Inc. Columbia, Missouri. Report No. 41968. Sponsored by Griffin Corporation, Valdosta, GA. Study completed May 22, 1995.

MRID 44327602. Murrell, H.R. and J.L. Veltri. 1997. Chronic toxicity of propazine to Daphnia magna under flow-through test conditions. Unpublished study conducted by ABC Laboratories, Inc, Columbia, Missouri. Amended final report No. 41958. Study sponsored by Griffin Corporation, Valdosta, GA. Study completed July 3, 1997.

MRID 47452301. Bergfield, A. 2008. Propazine: Acute Toxicity to the Rainbow Trout, Oncorhynchus mykiss, Determined Under Static Test Conditions. Unpublished study performed by ABC Laboratories, Inc., Missouri, USA. Laboratory report number 63222. Study sponsored by Albaugh,Inc. Study completed on June 13, 2008.

MRID 48036203. Bergfield, A. 2009. Propazine: Acute toxicity to the Bluegill Sunfish, Lepomis macrochirus, determined under flow-through test conditions. Unpublished study performed by ABC Laboratories, Inc., Columbia, Missouri. Laboratory Study No. 64353. Study sponsored by Albaugh, Inc., Valdosta, Georgia. Study completed April 30, 2009.

MRID 48036205. Lehman, C. 2009. Propazine: Early life-stage toxicity test with the Fathead Minnow, Pimephales promelas, under flow-through conditions. Unpublished study conducted by ABC Laboratories, Columbia, Missouri. ABC Study No. 64354. Study sponsored by Albaugh, Inc., Valdosta, GA. Study completed June 29, 2009.

Saka, M., N. Tada, and Y. Kamata. Chronic Toxicity of 1,3,5-Triazine Herbicides in the Postembryonic Development of the Western Clawed Frog *Silurana tropicalis*. Ecotoxicol. Environ. Saf.147:373-381, 2018. ECOREF #178499.

U.S. Environmental Protection Agency. Pesticide Ecotoxicity Database (Formerly: Environmental Effects Database (EEDB)). Environmental Fate and Effects Division, U.S.EPA, Washington, D.C., 1992. ECOREF #344.

U.S. EPA. 2024. Draft Comparison of Aquatic Life Protective Values Developed for Pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Clean Water Act (CWA). EPA-820-D-24-002.

2.1.3 Comparison of Aquatic Life Toxicity Values for Simazine: Data Sources and Considerations

Data used in the *Draft Comparison of Aquatic Life Protective Values Developed for Pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Clean Water Act (CWA)* (U.S. EPA 2024) were obtained from the Office of Pesticide Programs (OPP) registration review document for simazine (U.S. EPA 2016) and an EPA ECOTOX Knowledgebase search conducted in 2021.

2.1.3.1 Simazine Acute Toxicity Data

Acute data for simazine are shown in Table 1. Ranked invertebrate GMAVs from all data sources are listed in Table 2.

OW MDR ^a	Species	LC50	SMAV	GMAV	Source	MRID / ECOTOX REF
Plant	Anabaena flos-aquae	36	36	36	ECOTOX	344
Plant	Arthrospira platensis	6	6	6	OPP	E17259
G	Branchiura sowerbyi	1,090,000	1,588,201	1,588,201	ECOTOX	70292
		1,700,000			ECOTOX	70292
		1,897,000			ECOTOX	70292
		1,810,000			ECOTOX	70292
В	Carassius auratus	>32,000	>32000	>32000	OPP/ ECOTOX	344
В	Cirrhinus mrigala	765,000	820,378	820,378	ECOTOX	70292
		1,050,000			ECOTOX	70292
		1,100,000			ECOTOX	70292
		895,000			ECOTOX	70292
		840,000			ECOTOX	70292
		608,000			ECOTOX	70292
		635,000			ECOTOX	70292
		800,000			ECOTOX	70292
Е	Cypridopsis vidua	3700	3,700	3,700	OPP	4009801
D	Daphnia magna	1,000	>10192	>153213	OPP	45088221
		1,100			OPP	4009801
		>10,000			ECOTOX	6797
		>10,000			ECOTOX	6797
		>1,000,000			ECOTOX	89626
D	Daphnia pulex	424,000	153,213		ECOTOX	2897
		92,100			ECOTOX	2897
		92,100			ECOTOX	11881
Е	Gammarus fasciatus	130,000	130,000	130,000	OPP / ECOTOX	4009801 / 6797
Е	Hyalella azteca	270,000	270,000	270,000	ECOTOX	89626

Table 1. Acute toxicity data of simazine to freshwater aquatic organisms. (MDR specifies OW minimum data requirements under the Guidelines.)

OW MDR ^a	Species	LC50	SMAV	GMAV	Source	MRID / ECOTOX REF
Plant	Lemna gibba	140	140	152.4	OPP / ECOTOX	42503704 / 344
Plant	Lemna minor	166	166		ECOTOX	18093
В	Lepomis macrochirus	16,000	40,000	40,000	OPP / ECOTOX	25438 or 229607 / 344
		100,000			OPP / ECOTOX	4009801 / 6797
С	Lithobates catesbeiana	1,780,000	1,780,000	1,780,000	ECOTOX	89626
В	Morone saxatilis	250	>20,083	>20,083	ECOTOX	909
		>180,000			ECOTOX	5324
		>180,000			ECOTOX	5324
Plant	Navicula pelliculosa	90	90	90	OPP / ECOTOX	42503707 / 344
А	Oncorhynchus kisutch	330,000	330,000	>264441	ECOTOX	89626
А	Oncorhynchus mykiss	60,000	>61579		ECOTOX	344
		40,500			ECOTOX	344
		>10,000			ECOTOX	344
		>82,000			ECOTOX	344
		70,500			ECOTOX	344
		44,600			ECOTOX	344
		>100,000			ECOTOX	6797
		330,000			ECOTOX	89626
А	Oncorhynchus tshawytscha	910,000	910,000		ECOTOX	89626
Е	Pacifastacus leniusculus	30,600	30,600	30,600	ECOTOX	167249
Е	Palaemonetes kadiakensis	>5,600	>5600	>5600	OPP	4009801
В	Pimephales promelas	6,400	>31958	>31958	OPP / ECOTOX	33309 / 344
		>10,000			ECOTOX	6797
		510,000			ECOTOX	6797
F	Pteronarcys californica	1,900	1,900	1,900	OPP / ECOTOX	4009801 / 6797
Plant	Raphidocelis subcapitata	100	232.1	232.1	OPP / ECOTOX	42503706 / 344
		200			ECOTOX	16010
		100			ECOTOX	17639
		1,240			ECOTOX	18093
		100			ECOTOX	56747
		200			ECOTOX	69584
		220			ECOTOX	69584
		220			ECOTOX	69584
		748.5			ECOTOX	83543
		252			ECOTOX	165277
Plant	Selenastrum sp.	73.6	58.96	58.96	ECOTOX	84045

OW MDR ^a	Species	LC50	SMAV	GMAV	Source	MRID / ECOTOX REF
		57.3			ECOTOX	84045
		48.6			ECOTOX	84045
Plant	Vallisneria americana	67	67	67	OPP / ECOTOX	E164763 / 164763
G	Viviparus bengalensis	2,280,000	1,671,145	1,671,145	ECOTOX	70292
		1,676,000			ECOTOX	70292
		986,000			ECOTOX	70292
		2,070,000			ECOTOX	70292
С	Xenopus tropicalis	7,550	7,550	7,550	ECOTOX	178499

^a OW MDR Groups – Freshwater:

- A. the family Salmonidae in the class Osteichthyes
- B. a second family in the class Osteichthyes, preferably a commercially or recreationally important warmwater species (e.g., bluegill, channel catfish, etc.)
- C. a third family in the phylum Chordata (may be in the class Osteichthyes or may be an amphibian, etc.)
- D. a planktonic crustacean (e.g., cladoceran, copepod, etc.)
- E. a benthic crustacean (e.g., ostracod, isopod, amphipod, crayfish, etc.)
- F. an insect (e.g., mayfly, dragonfly, damselfly, stonefly, caddisfly, mosquito, midge, etc.)
- G. a family in a phylum other than Arthropoda or Chordata (e.g., Rotifera, Annelida, Mollusca, etc.)
- H. a family in any order of insect or any phylum not already represented.

OPP Acute Benchmark Values

The OPP nonvascular plant benchmark value for simazine is $6 \mu g/L$, which is the LC₅₀ for *A*. *platensis*. The OPP vascular plant benchmark value is $67 \mu g/L$, which is the LC₅₀ for *V*. *americana*.

The OPP invertebrate acute benchmark value is 500 μ g/L, which is $\frac{1}{2}$ the LC₅₀ for *D. magna*.

The OPP fish acute benchmark value is 3,200 μ g/L, which is ½ the LC₅₀ for *P. promelas*.

OW Acute Criterion

There is no criterion maximum concentration (CMC) for simazine. An illustrative example calculated was developed for this analysis, using all available data (Table 2). The Final Acute Value (FAV) calculated following the U.S. EPA (1985) methodology for the 22 genera in the simazine dataset was 10.36 μ g/L (Table 3).

Genus	Species	SMAV	GMAV	GMAV Rank	OW MDR Group
Rana	catesbeiana	1,780,000	1,780,000	22	С
Viviparus	bengalensis	1,671,145	1,671,145	21	G/H
Branchiura	sowerbyi	1,588,201	1,588,201	20	G
Cirrhinus	mrigala	820,378	820,378	19	В
Hyalella	azteca	270,000	270,000	17	E

Table 2. Simazine SMAVs and GMAVs (µg/L).

Genus	Species	SMAV	GMAV	GMAV Rank	OW MDR Group
Oncorhynchus	kisutch	330,000	>264,441	17	А
Oncorhynchus	mykiss	>61,597			А
Oncorhynchus	tshawytscha	910,000			А
Gammarus	fasciatus	130,000	130,000	16	Е
Lepomis	macrochirus	40,000	40,000	15	В
Daphnia	magna	>10,192	>39,517	14	D
Daphnia	pulex	153,213			D
Carassius	auratus	>32,000	>32,000	13	В
Pimephales	promelas	>31,958	>31,958	12	В
Pacifastacus	leniusculus	30,600	30,600	11	Е
Morone	saxatilis	20,083	20,083	10	В
Xenopus	tropicalis	7,550	7,550	9	С
Palaemonetes	kadiakensis	>5,600	>5,600	8	Е
Cypridopsis	vidua	3,700	3,700	7	Е
Pteronarcys	spp	1,900	1,900	6	F
Lemna	gibba	140	140	5	Plant
Raphidocelis	subcapitata	100	100	4	Plant
Navicula	pelliculosa	90	90	3	Plant
Vallisneria	americana	67	67	2	Plant
Arthrospira	platensis	6	6	1	Plant

^a OW MDR Groups – Freshwater:

A. the family Salmonidae in the class Osteichthyes

B. a second family in the class Osteichthyes, preferably a commercially or recreationally important warmwater species (e.g., bluegill, channel catfish, etc.)

C. a third family in the phylum Chordata (may be in the class Osteichthyes or may be an amphibian, etc.)

D. a planktonic crustacean (e.g., cladoceran, copepod, etc.)

E. a benthic crustacean (e.g., ostracod, isopod, amphipod, crayfish, etc.)

F. an insect (e.g., mayfly, dragonfly, damselfly, stonefly, caddisfly, mosquito, midge, etc.)

G. a family in a phylum other than Arthropoda or Chordata (e.g., Rotifera, Annelida, Mollusca, etc.)

H. a family in any order of insect or any phylum not already represented.

N	Rank	GMAV	ln(GMAV)	ln(GMAV) ²	P=R/(N+1)	sqrt(P)
22	4	100	4.605	21.21	0.1739	0.4170
	3	90	4.500	20.25	0.1304	0.3612
	2	67	4.205	17.68	0.0870	0.2949
	1	6	1.792	3.21	0.0435	0.2085
	Sum:		15.10	62.3	0.435	1.282
	$S^2 =$	220.64				
	L =	-0.984				
	A =	2.338				
	FAV =	10.36				
	CMC =	5.18				

Table 3. Genus-level acute HC₀₅ for simazine calculated following the U.S. EPA (1985) methodology.

Table 4. Summary and comparison of acute values for simazine.

Magnitude relative to ALB is the OPP ALB/OW value, the ratio for the OPP value/OW value for each value comparison. A ratio <1 indicates the OPP value is lower than the OW value and a ratio >1 indicates the OPP value is higher than the OW value.

Pesticide	Most Sensitive OPP ALB (Year published, species)	OW Illustrative ALC example (# of MDRs filled, magnitude relative to ALB)	OW Modified HC ₀₅ (# of MDRs filled, # of genera available, magnitude relative to ALB)
Simazine ¹	6 μg/L (2023; Arthrospira platensis; nonvascular plant)	5.2 μg/L (illustrative example calculated for this analysis; 8 MDRs filled, 1.2X)	NA

¹No 304(a) ALC recommendation available but has sufficient data to develop an illustrative ALC example for the purposes of these analyses only.

Figure 1 shows a genus-level sensitivity distribution for the simazine dataset. Major taxonomic groups are delineated by different symbols, and invertebrate genera are identified by name. Lines denoting the OPP acute benchmark values and the illustrative OW ALC example.

Figure 1. Simazine genus-level acute SD.

Symbols represent Genus Mean Acute Values (GMAVs) calculated using all available data from an Office of Water ECOTOX search in 2021 and the Office of Pesticide Programs (OPP) registration review document for simazine (U.S. EPA 2016).

2.1.3.2 Simazine Chronic Toxicity Data

Data Sources and Considerations

Chronic toxicity data for simazine were consolidated by OW and combined with data from OPP's registration review document for acephate (U.S. EPA 2016). The final chronic simazine dataset consisted of NOECs/LOEC for 15 species (Table 5).

OW MDR	Scientific	NOEC	LOEC	SMCV	GMCV	Source	MRID
Plant	Arthrospira platensis	IC05=1.0		1	1	OPP	E17259
В	Cyprinus carpio	60	600	189.7	189.7	OPP / ECOTOX	Velisek et al 2012 / 197125
В	Danio rerio	60		60	60	ECOTOX	167124
D	Daphnia magna			40	40	OPP	43676
		40				OPP	based on ACR
Plant	Lemna gibba	50	110	50	61.24	OPP / ECOTOX	42503704 / 344
Plant	Lemna minor	75	150	75		ECOTOX	18093
Plant	Myriophyllum aquaticum	50	1,500	50	50	ECOTOX	68622
Plant	Navicula pelliculosa	30	70	30	30	OPP / ECOTOX	42503707 / 344
В	Pimephales promelas	960	2000	1,386	1,386	OPP	43675
Plant	Pontederia cordata	300	1,000	300	300	ECOTOX	59738
Plant	Raphidocelis subcapitata	93.2	>93.2	85.60	85.60	OPP	49389101
		30	70			OPP / ECOTOX	42503706 / 344
		600	1,200			ECOTOX	18093
		32	100			ECOTOX	165277
Plant	Typha latifolia	300	1000	300	300	ECOTOX	57010
Plant	Vallisneria americana	<58	<58	<58	<58	OPP / ECOTOX	E164763 / 164763
С	Xenopus laevis	1.2	11	3.633	30.87	ECOTOX	178652
С	Xenopus tropicalis	83	828.5	262.2		ECOTOX	178499

 Table 5. Chronic toxicity data of simazine to freshwater aquatic organisms.

(MDR specifies OW minimum data requirements under the Guidelines.)

^a OW MDR Groups – Freshwater:

A. the family Salmonidae in the class Osteichthyes

- B. a second family in the class Osteichthyes, preferably a commercially or recreationally important warmwater species (e.g., bluegill, channel catfish, etc.)
- C. a third family in the phylum Chordata (may be in the class Osteichthyes or may be an amphibian, etc.)
- D. a planktonic crustacean (e.g., cladoceran, copepod, etc.)
- E. a benthic crustacean (e.g., ostracod, isopod, amphipod, crayfish, etc.)
- F. an insect (e.g., mayfly, dragonfly, damselfly, stonefly, caddisfly, mosquito, midge, etc.)
- G. a family in a phylum other than Arthropoda or Chordata (e.g., Rotifera, Annelida, Mollusca, etc.)

H. a family in any order of insect or any phylum not already represented.

OPP Chronic Benchmark Values

The OPP nonvascular plant benchmark value for simazine is $1 \mu g/L$, which is the NOEC for *Arthrospira platensis*. The OPP vascular plant benchmark value is 67 $\mu g/L$, which is the NOEC for *L. gibba*.

The OPP invertebrate chronic benchmark value is $40 \mu g/L$, which is the estimated NOEC for *Daphnia magna* (LC50 (rounded to 1,000 ug/L) divided by *D. magna* atrazine ACR of 25).

The OPP fish chronic benchmark value is 60 μ g/L, which is the NOEC for *C. carpio*.

GLI Tier II Chronic Value Calculation

Paired quantitative acute and chronic toxicity data were available for *Pimephales promelas and Xenopus tropicalis* allowing for the calculation of two ACRs. Per the GLI Tier II methodology, the default value of 18 was used to fulfill the remaining one ACR. The resulting ACRs for *X. tropicalis* is 28.79 and *P. promelas* is 4.618, and the final SACR is 13.38. Dividing the SAV of 10.36 μ g/L by the SACR of 13.38 results in a Secondary Continuous Value of 0.7742 μ g/L, and a Secondary Continuous Concentration of 0.77 μ g/L.

Detailed calculations for the SCV are shown below:

$$SACR = Geometric Mean of the ACRs$$
$$SACR = \sqrt[3]{28.79 * 4.618 * 18} = 13.38$$
$$SCV = \frac{SAV}{SACR}$$
$$SCV = \frac{10.36}{13.38} = 0.7742 \ \mu g/L$$

Modified Chronic HC05

The genus-level modified chronic HC_{05} calculated following the U.S. EPA (1985) methodology for the four most sensitive genera regardless of taxa (Table 6) in the simazine dataset was 0.8 μ g/L (Table 7).

Genus	Species	SMCV	GMCV	GMCV Rank	OW MDR Group
Pimephales	promelas	1,386	1,386	13	В
Typha	latifolia	300.0	300.0	12	Plant
Pontederia	cordata	300.0	300.0	11	Plant
Cyprinus	carpio	189.7	189.7	10	В
Danio	rerio	60	60	9	В
Daphnia	magna	40	40	8	D
Raphidocelis	subcapitata	85.60	85.60	7	Plant
Lemna	gibba	50	61.24	6	Plant

Table 6. Simazine SMCVs and GMCVs (µg/L).

Genus	Species	SMCV	GMCV	GMCV Rank	OW MDR Group
Lemna	minor	75			Plant
Vallisneria	americana	<58	<58	5	Plant
Myriophyllum	aquaticum	50	50	4	Plant
Xenopus	laevis	3.633	30.87	3	С
Xenopus	tropicalis	262.2			С
Navicula	pelliculosa	30	30	2	Plant
Arthrospira	platensis	1	1	1	Plant

^a OW MDR Groups – Freshwater:

A. the family Salmonidae in the class Osteichthyes

B. a second family in the class Osteichthyes, preferably a commercially or recreationally important warmwater species (e.g., bluegill, channel catfish, etc.)

C. a third family in the phylum Chordata (may be in the class Osteichthyes or may be an amphibian, etc.)

D. a planktonic crustacean (e.g., cladoceran, copepod, etc.)

E. a benthic crustacean (e.g., ostracod, isopod, amphipod, crayfish, etc.)

F. an insect (e.g., mayfly, dragonfly, damselfly, stonefly, caddisfly, mosquito, midge, etc.)

G. a family in a phylum other than Arthropoda or Chordata (e.g., Rotifera, Annelida, Mollusca, etc.)

H. a family in any order of insect or any phylum not already represented.

Table 7. Modified chronic HC₀₅ for propazine calculated following the U.S. EPA (1985) methodology.

N	Rank	GMCV	ln(GMCV)	ln(GMCV) ²	P=R/(N+1)	sqrt(P)
13	4	40	3.689	13.61	0.2857	0.5345
	3	30.87	3.430	11.76	0.2143	0.4629
	2	30	3.401	11.57	0.1429	0.3780
	1	1	0.000	0.00	0.0714	0.2673
	Sum:		10.52	36.9	0.714	1.643
	$S^2 =$	233.54				
	L =	-3.646				
	A =	-0.229				
	FCV =	0.7956				
	CCC=	0.80				

Table 8. Comparison and summary of chronic values for simazine.

Pesticide	Most Sensitive OPP ALB (Year published and species)	OW GLI Tier II value (# of ACRs filled, magnitude relative to ALB)	OW Modified HC ₀₅ (# of MDRs filled, # of genera available, magnitude relative to ALB)
Simazine	1 μg/L	0.77 μg/L	0.8 μg/L
	(<i>Arthrospira platensis;</i>	(GLI Tier II; 2 ACRs	(3 MDRs, 13 genera,
	nonvascular plant)	filled, 1.3X)	1.3X)

Magnitude relative to ALB is the OPP ALB/OW value, the ratio for the OPP value/OW value for each value comparison. A ratio >1 indicates the OPP value is higher than the OW value.

Figure 2 shows a chronic genus-level sensitivity distribution for the simazine dataset. Major taxonomic groups are delineated by different symbols. Lines denoting the OPP chronic benchmark values, GLI Tier II calculated chronic value, and modified HC_{05} value are included.

Figure 2. Simazine genus-level chronic SD.

Symbols represent Genus Mean Chronic Values (GMCVs) calculated using all available data from an Office of Water ECOTOX search in 2021 and the Office of Pesticide Programs (OPP) registration review document for propazine (U.S. EPA 2016).

2.1.3.3 Simazine References

MRID 42503704. Thompson, S.G. 1992. A 14-day toxicity test with duckweed (Lemna gibba G3). Unpublished study conducted by Wildlife International, Ltd, Easton, MD. Laboratory Report No. 108A-137. Study sponsored by Agricultural Division, Ciba-Geigy Corporation, Greensboro, NC.

MRID 42503706. Thompson, S.G. 1992. A 5-day toxicity test with the freshwater alga (Selenastrum capricornutum). Unpublished study conducted by Wildlife Internationa, Ltd., Easton, MD. Laboratory study number 108A-141. Study sponsored by Agricultural Division Ciba-Geigy Corporation, Greensboro, NC. Study completed September 10, 1992.

MRID 42503707. Thompson, S.G. 1992. A 5-day toxicity test with the freshwater diatom (Navicular pelliculosa). Unpublished study conducted by Wildlife International, Easton, MD. Laboratory study number 108A-138. Study sponsored by Agricultural Division, Ciba-Geigy Corporation, Greensboro, NC. Study completed September 11, 1992.

MRID 43676. Mayer, F.L. and M.D. Sander. 1981. Effects of Atrazine Fathead Minnow under... Unpublished study conducted by Fish-Pesticide Research Laboratory, Fish and Wildlife Service, Columbia, Missouri.

MRID 49389101. Grade, R. 1999. Growth Inhibition Test of G 30414 to Green Algae (Selenastrum capricornutum) under Static Conditions. Final Report. Unpublished study conducted by Novartis Crop Protection AG, Basel, Switzerland. Report Number 991589. Study sponsored by Syngenta Crop Protection LLC, Greensboro, NC. Study completed on November 16, 1999.

Abdel-Hamid, M.I. 1996. Development and Application of a Simple Procedure for Toxicity Testing Using Immobilized Algae. Water Sci. Technol. 33(6): 129-138. doi:10.2166/wst.1996.0089. ECOREF #69584.

Bednarz, T. (1981). The Effect of Pesticides on the Growth of Green and Blue-Green Algae Cultures. Acta Hydrobiol., 23, (2), 155-172. ECOREF#:17259

Carter, J.G. 1981. Effects of the Herbicide Simazine upon Production in a Two Member Aquatic Food Chain. Ph.D. Thesis, Utah State University, Logan, UT:213 p. ECOREF #70902.

Fairchild, J.F., D.S. Ruessler, P.S. Haverland, and A.R. Carlson. 1997. Comparative Sensitivity of Selenastrum capricornutum and Lemna minor to Sixteen Herbicides. Arch. Environ. Contam. Toxicol., 32, (4), 353-357. doi:10.1007/s002449900196. ECOREF #18093.

Fairchild, J.F., D.S. Ruessler, P.S. Haverland, and A.R. Carlson. 1997. Comparative Sensitivity of Selenastrum capricornutum and Lemna minor to Sixteen Herbicides. Arch. Environ. Contam. Toxicol. 32(4): 353-357. doi:10.1007/s002449900196. ECOREF #18093.

Fairchild, J.F., D.S. Ruessler, P.S. Haverland, and A.R. Carlson. 1997. Comparative Sensitivity of Selenastrum capricornutum and Lemna minor to Sixteen Herbicides. Arch. Environ. Contam. Toxicol. 32(4): 353-357. doi:10.1007/s002449900196. ECOREF #18093.

Fitzmayer, K.M., J.G. Geiger, and M.J. Van den Avyle. 1982. Acute Toxicity Effects of Simazine on *Daphnia pulex* and Larval Striped Bass. Proc. Annu. Conf. Southeast. Assoc. Fish Wildl. Agencies36:146-156. ECOREF #2897.

Fitzmayer, K.M., J.G. Geiger, and M.J. Van den Avyle. 1982. Effects of Chronic Exposure to Simazine on the Cladoceran, *Daphnia pulex*. Arch. Environ. Contam. Toxicol. 11(5): 603-609. ECOREF #11881.

Kallqvist, T., and R. Romstad. 1994. Effects of Agricultural Pesticides on Planktonic Algae and Cyanobacteria -- Examples of Interspecies Sensitivity Variations. Norw. J. Agric. Sci. Suppl. 13: 117-131. ECOREF #16010.

Kamaya, Y., T. Takada, and K. Suzuki. 2004. Effect of Medium Phosphate Levels on the Sensitivity of Selenastrum capricornutum to Chemicals. Bull. Environ. Contam. Toxicol. 73(6): 995-1000. doi:10.1007/s00128-004-0524-8. ECOREF #84045.

Knuteson, S.L., T. Whitwell, and S.J. Klaine. 2002. Influence of Plant Age and Size on Simazine Toxicity and Uptake. J. Environ. Qual. 31(6): 2096-2103. ECOREF #68622.

Ma, J., S. Wang, P. Wang, L. Ma, X. Chen, and R. Xu. 2006. Toxicity Assessment of 40 Herbicides to the Green Alga Raphidocelis subcapitata. Ecotoxicol. Environ. Saf. 63(3): 456-462. doi:10.1016/j.ecoenv.2004.12.001. ECOREF #83543.

Mayer, F.L., Jr., and M.R. Ellersieck. 1986. Manual of Acute Toxicity: Interpretation and Data Base for 410 Chemicals and 66 Species of Freshwater Animals. USDI Fish and Wildlife Service, Publication No.160, Washington, DC:505 p. ECOREF #6797.

McCann, J.A., and R.K. Hitch. 1980. Simazine Toxicty to Fingerling Striped Bass. Prog. Fish-Cult. 42(3): 180-181. ECOREF #5324.

Okamura, H., I. Aoyama, D. Liu, R.J. Maguire, G.J. Pacepavicius, and Y.L. Lau. 2000. Fate and Ecotoxicity of the New Antifouling Compound Irgarol 1051 in the Aquatic Environment. Water Res. 34(14): 3523-3530. doi:10.1016/S0043-1354(00)00095-6. ECOREF #56747.

Perez, J., I. Domingues, A.M.V.M. Soares, and S. Loureiro. 2011. Growth Rate of Pseudokirchneriella subcapitata Exposed to Herbicides Found in Surface Waters in the Alqueva Reservoir (Portugal): A Bottom-up Approach Using Binary Mixtures. Ecotoxicology 20(6): 1167-1175. doi:10.1007/s10646-011-0661-x. ECOREF #165277.

Perez, J., I. Domingues, A.M.V.M. Soares, and S. Loureiro. 2011. Growth Rate of Pseudokirchneriella subcapitata Exposed to Herbicides Found in Surface Waters in the Alqueva Reservoir (Portugal): A Bottom-up Approach Using Binary Mixtures. Ecotoxicology 20(6): 1167-1175. doi:10.1007/s10646-011-0661-x. ECOREF #165277.

Plhalova, L., I. Haluzova, S. Macova, P. Dolezelova, E. Praskova, P. Marsalek, M. Skoric, Z. Svobodova, V. Pistekova, an. 2011. Effects of Subchronic Exposure to Simazine on Zebrafish (Danio rerio). Neuroendocrinol. Lett. 32(Suppl. 1): 89-94. ECOREF #167124.

Sai,L., Y. Liu, B. Qu, G. Yu, Q. Guo, C. Bo, L. Xie, Q. Jia, Y. Li, X. Li, J.C. Ng, and C. Peng. 2015. The Effects of Simazine, a Chlorotriazine Herbicide, on the Expression of Genes in Developing Male Xenopus laevis. Bull. Environ. Contam. Toxicol. 95(2): 157-163. ECOREF #178652.

Saka, M., N. Tada, and Y. Kamata. 2018. Chronic Toxicity of 1,3,5-Triazine Herbicides in the Postembryonic Development of the Western Clawed Frog *Silurana tropicalis*. Ecotoxicol. Environ. Saf. 147: 373-381. ECOREF #178499.

U.S. Environmental Protection Agency. 1992. Pesticide Ecotoxicity Database (Formerly: Environmental Effects Database (EEDB)). Environmental Fate and Effects Division, U.S.EPA, Washington, D.C., 1992. ECOREF #344.

U.S. Environmental Protection Agency. 2024. Draft Comparison of Aquatic Life Protective Values Developed for Pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Clean Water Act (CWA). EPA-820-D-24-002.

Velisek, J., A. Kouba, and A. Stara. 2013. Acute Toxicity of Triazine Pesticides to Juvenile Signal Crayfish (*Pacifastacus leniusculus*). Neuroendocrinol. Lett.34(2): 31-36. ECOREF #167249.

Velisek, J., A. Stara, J. Machova, and Z. Svobodova. 2012. Effects of long-term exposure to simazine in real concentrations on common carp (Cyprinus carpio L). Ecotoxicol. Environ. Saf. 76: 79-86.

Versteeg, D.J. 1990. Comparison of Short- and Long-Term Toxicity Test Results for the Green Alga, Selenastrum capricornutum. ASTM Spec. Tech. Publ., 40-48. ECOREF #17639.

Wan, M.T., C. Buday, G. Schroeder, J. Kuo, and J. Pasternak. 2006. Toxicity to Daphnia magna, Hyalella azteca, Oncorhynchus kisutch, Oncorhynchus mykiss, Oncorhynchus tshawytscha, and Rana catesbeiana of Atrazine, Metolachlor, Simazine, and Their Formulated Products. Bull. Environ. Contam. Toxicol. 76(1): 52-58. doi:10.1007/s00128-005-0888-4. ECOREF #89626.

Wilson, P.C., and S.B. Wilson. 2010. Toxicity of the Herbicides Bromacil and Simazine to the Aquatic Macrophyte, Vallisneria americana Michx. Environ. Toxicol. Chem. 29(1): 201-211. doi:10.1002/etc.22. ECOREF #164763.

Wilson, P.C., and S.B. Wilson. 2010. Toxicity of the Herbicides Bromacil and Simazine to the Aquatic Macrophyte, *Vallisneria americana* Michx. Environ. Toxicol. Chem. 29(1): 201-211. ECOREF #164763.

Wilson, P.C., T. Whitwell, and S.J. Klaine. 2000. Metalaxyl and Simazine Toxicity to and Uptake by Typha latifolia. Arch. Environ. Contam. Toxicol. 39(3): 282-288. ECOREF #57010.

Wilson, P.C., T. Whitwell, and S.J. Klaine. 2000. Phytotoxicity, Uptake, and Distribution of 14C-Simazine in Acorus gramenius and Pontederia cordata. Weed Sci. 48: 701-709. ECOREF #59738.

2.1.4 Comparison of Aquatic Life Toxicity Values for Bensulide: Data Sources and Considerations

Data used in the *Draft Comparison of Aquatic Life Protective Values Developed for Pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Clean Water Act (CWA)* (U.S. EPA 2024) were obtained from the Office of Pesticide Programs (OPP) registration review document for bensulide (U.S. EPA 2016) and an EPA ECOTOX Knowledgebases search conducted in 2021.

2.1.4.1 Bensulide Acute Toxicity Data

Acute data for bensulide are shown in Table 1. Ranked invertebrate GMAVs from all data sources are listed in Table 2.

OW MDR ^a	Scientific	LC50	SMAV	GMAV	Source	MRID/ECOTOX REF
Plant	Blue green algae (Anabaena flos-aquae)	>3,580	>3580	>3580	OPP / ECOTOX	44720403 / 344
D	Water Flea (Daphnia magna)	580	580	580	OPP	159322
Е	Scud (Gammarus fasciatus)	1,400	1,400	1,400	OPP / ECOTOX	40098001 / 6797
Plant	Duckweed (Lemna gibba)	160	149.7	149.7	OPP / ECOTOX	45334101 / 344
		140			OPP / ECOTOX	44720406 / 344
В	Bluegill (Lepomis macrochirus)	1,400	1065	1065	OPP / ECOTOX	157316 / 344
		810			OPP / ECOTOX	40098001 / 6797
Plant	Diatom (Navicula pelliculosa)	<690	<690	<690	ECOTOX	344
А	Rainbow trout (Oncorhynchus mykiss)	1,100	889.9	889.9	OPP / ECOTOX	157315 / 344
		720			OPP / ECOTOX	40098001 / 6797
Plant	Green algae (Raphidocelis subcapitata)	1800	1800	1800	OPP / ECOTOX	44720402 / 344
Plant	Diatom (Skeletonema costatum)	780	780	780	OPP	44720405

Table 1. Acute toxicity data of bensulide to freshwater aquatic organisms. (MDR specifies OW minimum data requirements under the Guidelines.)

^a OW MDR Groups – Freshwater:

A. the family Salmonidae in the class Osteichthyes

C. a third family in the phylum Chordata (may be in the class Osteichthyes or may be an amphibian, etc.)

D. a planktonic crustacean (e.g., cladoceran, copepod, etc.)

E. a benthic crustacean (e.g., ostracod, isopod, amphipod, crayfish, etc.)

F. an insect (e.g., mayfly, dragonfly, damselfly, stonefly, caddisfly, mosquito, midge, etc.)

G. a family in a phylum other than Arthropoda or Chordata (e.g., Rotifera, Annelida, Mollusca, etc.)

H. a family in any order of insect or any phylum not already represented.

B. a second family in the class Osteichthyes, preferably a commercially or recreationally important warmwater species (e.g., bluegill, channel catfish, etc.)

OPP Acute Benchmark Values

The OPP vascular plant benchmark value for bensulide is 140 μ g/L, which is the LC₅₀ for L. gibba. The OPP nonvascular plant benchmark value is 780 μ g/L, which is the LC₅₀ for S. costatum.

The OPP invertebrate acute benchmark value is 290 μ g/L, which is $\frac{1}{2}$ the LC₅₀ of 580 μ g/L for D. magna.

The fish acute benchmark value is 550 μ g/L, which is $\frac{1}{2}$ the LC₅₀ of 1,100 μ g/L for *O. mykiss*.

GLI Tier II Acute Value Calculation

The acceptable acute dataset for bensulide fulfills four of the eight MDRs, corresponding to the use of a Secondary Acute Factor (SAF) of 7. Applying the SAF to the lowest, most sensitive GMAV regardless of taxa (i.e., 149.7 µg/L for duckweed (Lemna gibba)), the calculated Secondary Acute Value (SAV) is 21.39 µg/L. The Secondary Maximum Criterion (SMC), which is calculated as half the SAV, is 10.7 μ g/L. Detailed calculations for the SMC are shown below:

$$SAV = \frac{\text{Lowest GMAV}}{\text{SAF}}$$
$$SAV = \frac{149.7}{7} = 21.39 \ \mu g/L$$
$$SMC = \frac{\text{SAV}}{2}$$
$$SMC = \frac{21.39}{2} = 10.7 \ \mu g/L$$

Modified Acute HC05

The genus-level modified acute HC_{05} calculated following the U.S. EPA (1985) methodology for the four most sensitive genera regardless of taxa (Table 2) in the bensulide dataset was 106.4 μ g/L (Table 3).

> V MDR broup

able 2. Bensulide SMA vs and GMA vs ($\mu g/L$).						
Genus	Species	SMAV	GMAV	GMAV Rank	OW MI Grou	
Anabaena	flos-aquae	>3,580	>3,580	9	Plant	
Raphidocelis	subcapitata	1,800	1,800	8	Plant	
Gammarus	fasciatus	1,400	1,400	7	Е	
Oncorhynchus	mykiss	1,100	1,100	6	А	
Lepomis	macrochirus	1,065	1,065	5	В	
Skeletonema	costatum	780	780	4	Plant	

Genus	Species	SMAV	GMAV	GMAV Rank	OW MDR Group
Navicula	pelliculosa	<690	<690	3	Plant
Daphnia	magna	580	580	2	D
Lemna	gibba	149.7	149.7	1	Plant

^a OW MDR Groups – Freshwater:

A. the family Salmonidae in the class Osteichthyes

- B. a second family in the class Osteichthyes, preferably a commercially or recreationally important warmwater species (e.g., bluegill, channel catfish, etc.)
- C. a third family in the phylum Chordata (may be in the class Osteichthyes or may be an amphibian, etc.)
- D. a planktonic crustacean (e.g., cladoceran, copepod, etc.)
- E. a benthic crustacean (e.g., ostracod, isopod, amphipod, crayfish, etc.)
- F. an insect (e.g., mayfly, dragonfly, damselfly, stonefly, caddisfly, mosquito, midge, etc.)
- G. a family in a phylum other than Arthropoda or Chordata (e.g., Rotifera, Annelida, Mollusca, etc.)
- H. a family in any order of insect or any phylum not already represented.

Table 3. Modified acute HC₀₅ for bensulide calculated following the U.S. EPA (1985) methodology.

N	Rank	GMAV	ln(GMAV)	ln(GMAV) ²	P=R/(N+1)	sqrt(P)
9	4	780	6.659	44.35	0.4000	0.6325
	3	690	6.537	42.73	0.3000	0.5477
	2	580	6.363	40.49	0.2000	0.4472
	1	149.7	5.009	25.09	0.1000	0.3162
	Sum:		24.57	152.6	1.000	1.944
	$S^2 =$	31.60				
	L =	3.410				
	A =	4.667				
	FAV =	106.4				
	CMC =	53.21				

Table 4. Comparison and summary of acute values for bensulide.

Magnitude relative to ALB is the OPP ALB/OW value, the ratio for the OPP value/OW value for each value comparison. A ratio <1 indicates the OPP value is lower than the OW value and a ratio >1 indicates the OPP value is higher than the OW value.

Pesticide	OPP Most Sensitive ALB (Year published, species)	OW GLI Tier II value (# of MDRs filled, magnitude relative to ALB)	OW Modified HC ₀₅ /2 (# of MDRs filled, # of genera available, magnitude relative to ALB)
Bensulide	140 μg/L (2016; <i>Lemna gibba;</i> vascular plant)	10.7 μg/L (GLI Tier II; 4 MDRs filled, 13X)	53.21 μg/L (4 MDRs, 9 genera, 2.6X)

Figure 1 shows a genus-level sensitivity distribution for the bensulide dataset. Major taxonomic groups are delineated by different symbols. Lines denoting the OPP acute benchmark values, GLI Tier II calculated acute value, and modified $HC_{05}/2$ value are included.

Figure 1. Bensulide genus-level acute SD.

Symbols represent Genus Mean Acute Values (GMAVs) calculated using all available data from an Office of Water ECOTOX search in 2021 and the Office of Pesticide Programs (OPP) registration review document for bensulide (U.S. EPA 2016).

2.1.4.2 Bensulide Chronic Toxicity Data

Data Sources and Considerations

Chronic toxicity data for bensulide were consolidated by OW and combined with data from OPP's registration review document for acephate (U.S. EPA 2016). The final chronic bensulide dataset consisted of NOECs/LOEC for seven species (Table 5).

OW MDR ^a	Species	NOEC	LOEC	SMCV	GMCV	Source	MRID/ECOTOX REF
	Blue green algae					OPP /	
Plant	(Anabaena flos-aquae)	3,580		3,580	3,580	ECOTOX	44720403 / 344
	Water Flea						
D	(Daphnia magna)	10.9	16	<7.057	<7.057	OPP	49110401
						OPP /	
		4.2	10			ECOTOX	45303101 / 344
						OPP /	
		<4.2	4.2			ECOTOX	45063401 / 344
						OPP /	
		<6.9	6.9			ECOTOX	44720407 / 344
						OPP /	
Plant	Duckweed (Lemna gibba)	42.8		<42.4	<42.4	ECOTOX	45334101 / 344
						OPP /	
		<42.1				ECOTOX	44720406 / 344
	Diatom (Navicula						
Plant	pelliculosa)	<410		<410	<410	ECOTOX	344
	Fathead minnow						49378102 and
В	(Pimephales promelas)	200	369	384.2	384.2	OPP	49001601
		374	789			OPP	44720408
	Green algae (Raphidocelis					OPP /	
Plant	subcapitata)	EC05=930		930	930	ECOTOX	44720402 / 344
	Diatom (Skeletonema						
Plant	costatum)	635		635	635	OPP	44720405

(MDR specifies OW minimum data requirements under the Guidelines.)

^a OW MDR Groups – Freshwater:

A. the family Salmonidae in the class Osteichthyes

- B. a second family in the class Osteichthyes, preferably a commercially or recreationally important warmwater species (e.g., bluegill, channel catfish, etc.)
- C. a third family in the phylum Chordata (may be in the class Osteichthyes or may be an amphibian, etc.)
- D. a planktonic crustacean (e.g., cladoceran, copepod, etc.)
- E. a benthic crustacean (e.g., ostracod, isopod, amphipod, crayfish, etc.)
- F. an insect (e.g., mayfly, dragonfly, damselfly, stonefly, caddisfly, mosquito, midge, etc.)
- G. a family in a phylum other than Arthropoda or Chordata (e.g., Rotifera, Annelida, Mollusca, etc.)
- H. a family in any order of insect or any phylum not already represented.

OPP Chronic Benchmark Values

The OPP vascular plant benchmark value is $42 \mu g/L$, which is the NOEC for *Lemna gibba*. The OPP non-vascular plant benchmark value for bensulide is 635 $\mu g/L$, which is the NOEC for the diatom (*Skeletonema costatum*).

The OPP invertebrate chronic benchmark for bensulide value is 11 μ g/L, which is the NOEC for *Daphnia magna*.

The OPP fish chronic benchmark value is 169 μ g/L, which is the NOEC for *Pimephales* promelas.

GLI Tier II Chronic Value Calculation

Paired quantitative acute and chronic toxicity data were available for *Daphnia magna* allowing for the calculation of one *D. magna* ACR of 43.92. Per the GLI Tier II methodology, the default value of 18 was used to fulfill the remaining two ACRs. The resulting final SACR is 24.23. Dividing the SAV of 21.39 μ g/L by the SACR of 17.31 results in a Secondary Continuous Value of 0.8828 μ g/L, and a Secondary Continuous Concentration of 0.88 μ g/L. Detailed calculations for the SCV are shown below:

SACR = Geometric Mean of the ACRs
SACR =
$$\sqrt[3]{43.92 \times 18 \times 18} = 24.23$$

SCV = $\frac{SAV}{SACR}$
SCV = $\frac{21.39}{24.23} = 0.8828 \,\mu g/L$

Modified Chronic HC05

The genus-level modified chronic HC05 calculated following the U.S. EPA (1985) methodology for the four most sensitive genera regardless of taxa (Table 6) in the bensulide dataset was 2.3 μ g/L (Table 7).

Genus	Species	SMCV	GMCV	GMCV Rank	MDR Group
Anabaena	flos-aquae	3,580	3,580	7	Plant
Raphidocelis	subcapitata	930 ^a	930 ^a	6	Plant
Skeletonema	costatum	635	635	5	Plant
Navicula	pelliculosa	<410	<410	4	Plant
Pimephales	promelas	368.3	368.3	3	В
Lemna	gibba	<42.4	<42.4	2	Plant
Daphnia	magna	<7.057	<7.057	1	D

Table 6. Bensulide SMCVs and GMCVs (µg/L).

a - EC05 (NOAEC not reported)

N	Rank	GMCV	ln(GMCV)	ln(GMCV) ²	P=R/(N+1)	sqrt(P)
7	4	410	6.016	36.19	0.5000	0.7071
	3	368.3	5.909	34.92	0.3750	0.6124
	2	42.4	3.747	14.04	0.2500	0.5000
	1	7.057	1.954	3.82	0.1250	0.3536
	Sum:		17.63	89.0	1.250	2.173
	$S^2 =$	162.60				
	L =	-2.521				
	A =	0.331				
	FCV =	1.392				
	CCC=	1.4				

Table 7. Modified chronic HC₀₅ for bensulide calculated following the U.S. EPA (1985) methodology.

Table 8. Summary and comparison of chronic values for bensulide.

Magnitude relative to ALB is the OPP ALB/OW value, the ratio for the OPP value/OW value for each value comparison. A ratio <1 indicates the OPP value is lower than the OW value and a ratio >1 indicates the OPP value is higher than the OW value.

Pesticide	Most Sensitive OPP ALB (Year published and species)	OW GLI Tier II value (# of ACRs filled, magnitude relative to ALB)	OW Modified HC ₀₅ (# of MDRs filled, # of genera available, magnitude relative to ALB)
Bensulide	11 μg/L (2016; <i>Daphnia magna;</i> invertebrate)	0.88 μg/L (GLI Tier II; 1 ACR filled, 12.5X)	1.4 μg/L (2 MDRs, 7 genera, 7.9X)

Figure 2 shows a chronic genus-level sensitivity distribution for the propazine dataset. Major taxonomic groups are delineated by different symbols. Lines denoting the OPP chronic benchmark values, GLI Tier II calculated chronic value, and modified HC₀₅ value are included.

Figure 2. Bensulide genus-level chronic SD.

Symbols represent Genus Mean Chronic Values (GMCVs) calculated using all available data from an Office of Water ECOTOX search in 2021 and the Office of Pesticide Programs (OPP) registration review document for bensulide (U.S. EPA 2016).

2.1.4.3 Bensulide References

MRID 44720402. Kransfelder, J.A. and L. Stuerman. 1998. Static Toxicity Test for Determining the Effects of Test Substances to the Green Alga, Selenastrum capricornutum. Unpublished study conducted by ABC Laboratories, Inc., Columbia, Missouri. ABC Study No. 44601. Study sponsored by Gowan Company, Yuma, AZ. Study completed December 11, 1998.

MRID 44720403. Kranzfelder, J.A. and L. Stuerman. 1998. Static Toxicity Test for Determining the Effects of Test Substances to the Blue-green Alga, Anabaena flos-aquae. Unpublished study conducted by ABC Laboratories, Ins., Columbia, Missouri, ABC Study No 44602. Study sponsored by Gowan Company, Yuma, AZ. Study completed December 11, 1998.

MRID 44720405. Kransfelder, J.A. and L. Stuerman. 1998. Static Toxicity Test for Determining the Effects of Test Substances to the Saltwater Diatom, Skeletonema costatum. Unpublished study conducted by ABC Laboratories, Inc., Columbia, Missouri. ABC Study No. 44604. Study sponsored by Gowan Company, Yuma, AZ. Study completed December 11, 1998.

MRID 44720406. Kranzfelder, J.A. and L. Stuerman. 1998. Static Toxicity test for Determining the Effects of the test Substance to Duckweed, Lemna gibba G3. Unpublished study conducted by ABC Laboratories, Inc. Columbia, Missouri. ABC Study No. 44605. Study sponsored by Gowan Company, Yuma, AZ. Study completed December 11, 1998.

MRID 44720407. Kranzfelder, J.A., L. Stuerman, and D. Malorin. 1998. Life-cycle toxicity test of Daphnia magna under flow-through conditions. Unpublished study conducted by ABC Laboratories, Inc., Columbia, Missouri. ABC Study No. 44606. Study sponsored by Gowan Company, Yuma, AZ. Study completed December 14, 1998.

MRID 44720408. Kranzfelder, J.A., L. Stuerman, and D. Malorin. 1998. Early life-stage toxicity test of Fathead Minnow, Pimephales promelas, under flow-through conditions. Unpublished study conducted by ABC Laboratories, Inc., Columbia, Missouri. ABC Study No. 44607. Study sponsored by Gowan Company, Yuma, AZ. Study completed December 10, 1998.

MRID 45063401. Kranzfelder, J.A., L. Stuerman, and D. Malorin. 1998. Life-cycle toxicity test of Daphnia magna under flow-through conditions. Unpublished study conducted by ABC Laboratories, Inc. Columbia, Missouri. ABC Study No. 44606. Study sponsored by Gowan Company, Yuma, AZ. Study completed December 14, 1998.

MRID 45334101. Madsen, T.J. and M. Goble. 2001. Toxicity of Bensulide Technical to Duckweed, Lemna gibba G3 Determined Under Static Test Conditions. Unpublished study conducted by ABC Laboratories, Inc., Columbia, Missouri. ABC Study No. 46422. Study sponsored by Gowan Company, Yuma, AZ. Study completed January 30, 2001.

MRID 49001601. Leak, T. 2012. Besulide: Life-cycle Toxicity test with the Fathead Minnow, Pimephales promelas, Under Flow-through Conditions. Unpublished study conducted by ABC Laboratories, Inc. Columbia, Missouri. Laboratory Report ID 67498. Study sponsored by Gowan Company, Yuma, AZ. Study completed October 30, 2012.

MRID 49110401. Rebstock, M. 2013. Bensulide: Chronic Toxicity Test with the Cladoceran, Daphnia magna, Exposed Under Static-Renewal Conditions. Unpublished study performed by ABC Laboratories, Inc., Columbia, MO. Laboratory Study No. 69125. Study sponsored by Gowan Company, Yuma, AZ. Study initiated September 25, 2012 and completed April 24, 2013. MRID 49378102. Leak, T. 2011. Bensulide: Life-cycle Toxicity Test with the Fathead Minnow Pimephales promelas, Under Flow-through Conditions. Unpublished study conducted by ABC Laboratories, Inc., Columbia, Missouri. Study ID No. 67498. Study sponsored by Gowan Company, Yuma, AZ. Amended study completed May 7, 2014.

U.S. Environmental Protection Agency. Pesticide Ecotoxicity Database (Formerly: Environmental Effects Database (EEDB)). Environmental Fate and Effects Division, U.S.EPA, Washington, D.C., 1992. ECOREF #344

U.S. Environmental Protection Agency. 2024. Draft Comparison of Aquatic Life Protective Values Developed for Pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Clean Water Act (CWA). EPA-820-D-24-002.

2.1.5 Comparison of Aquatic Life Toxicity Values for Glyphosate: Data Sources and Considerations

Data used in the *Draft Comparison of Aquatic Life Protective Values Developed for Pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Clean Water Act (CWA)* (U.S. EPA 2024) were obtained from the Office of Pesticide Programs (OPP) registration review document for gylphosate (U.S. EPA 2009).

2.1.5.1 Glyphosate Acute Toxicity Data

Acute data for glyphosate are shown in Table 1. Ranked invertebrate GMAVs from all data sources are listed in Table 2.

OW MDR ^a	Species	LC50	SMAV	GMAV	MRID REF
Plant	Cyanobacterium (Anabaena flos-aquae)	11720	13259	13259	40236904
Plant		15000			44320639
F	Midge (Chironomus plumosus)	13000	13000	13000	162296
D	Water Flea (Daphnia magna)	134000	134000	134000	44320631
Plant	Duckweed (Lemna gibba)	11900	19384	19384	44320638
Plant		24000			45773101
Plant		25500			40236905
В	Bluegreen sunfish (Lepomis macrochirus)	45000	45000	45000	44320630
Plant	Diatom (Navicula peliculosa)	39900	29896	29896	40236902
		22400			44320641
А	Rainbow Trout (Oncorhynchus mykiss)	77,600	101973	101973	44125705
А		134000			44320629
В	Fathead Minnow (<i>Pimephales promelas</i>)	67900	67900	67900	44125704
Plant	Green algae (<i>Raphidocelis</i> subcapitata)	12100	12855	12855	4023690
Plant		12540			40236901
Plant		14000			44320637

Table 1. Acute toxicity data of glyphosate to freshwater aquatic organisms. (MDR specifies OW minimum data requirements under the Guidelines.)

^a OW MDR Groups – Freshwater:

A. the family Salmonidae in the class Osteichthyes

- B. a second family in the class Osteichthyes, preferably a commercially or recreationally important warmwater species (e.g., bluegill, channel catfish, etc.)
- C. a third family in the phylum Chordata (may be in the class Osteichthyes or may be an amphibian, etc.)
- D. a planktonic crustacean (e.g., cladoceran, copepod, etc.)
- E. a benthic crustacean (e.g., ostracod, isopod, amphipod, crayfish, etc.)
- F. an insect (e.g., mayfly, dragonfly, damselfly, stonefly, caddisfly, mosquito, midge, etc.)
- G. a family in a phylum other than Arthropoda or Chordata (e.g., Rotifera, Annelida, Mollusca, etc.)
- H. a family in any order of insect or any phylum not already represented.

OPP Acute Benchmark Values

The OPP nonvascular plant benchmark value for glyphosate is 11,400 μ g/L, which is the LC₅₀ for the Green algae (*Raphidocelis subcapitata*). The OPP vascular plant benchmark value is 11,900 μ g/L, which is the LC₅₀ for *L. gibba*.

The OPP invertebrate acute benchmark value is 26,600 μ g/L, which is ¹/₂ the LC₅₀ for *C*. *plumosis*.

OPP fish acute benchmark value is 21,500 μ g/L, which is ½ the LC₅₀ for *L. macrochirus*.

GLI Tier II Acute Value Calculation

The acceptable acute dataset for propazine fulfills four of the eight MDRs, corresponding to the use of a Secondary Acute Factor (SAF) of 7. Applying the SAF to the lowest, most sensitive GMAV regardless of taxa (i.e., 12,855 μ g/L for the Green algae (*Raphidocelis subcapitata*)), the calculated Secondary Acute Value (SAV) is 3,213 μ g/L. The Secondary Maximum Criterion (SMC), which is calculated as half the SAV, is 1,607 μ g/L.

Detailed calculations for the SMC are shown below:

$$SAV = \frac{\text{Lowest GMAV}}{\text{SAF}}$$
$$SAV = \frac{12,855}{7} = 3,213 \ \mu g/L$$
$$SMC = \frac{\text{SAV}}{2}$$
$$SMC = \frac{3,213}{2} = 1,607 \ \mu g/L$$

Modified Acute HC05

The genus-level modified acute HC_{05} calculated following the U.S. EPA (1985) methodology for the four most sensitive genera regardless of taxa (Table 2) in the glyphosate dataset was 9,816 μ g/L (Table 3).

Genus	Species	SMAV	GMAV	GMAV Rank	MDR Group
Daphina	magna	134,000	134,000	9	D
Oncorhynchus	mykiss	101,973	101,973	8	А
Pimephales	promelas	67,900	67,900	7	В
Lepomis	macrochirus	45,000	45,000	6	В
Navicula	peliculosa	29,896	29,896	5	Plant
Lemna	gibba	19,384	19,384	4	Plant
Anabaena	flos-aquae	13,259	13,259	3	Plant
Chironomus	plumosus	13,000	13,000	2	F
Raphidocelis	subcaptata	12,855	12,855	1	Plant

^a OW MDR Groups – Freshwater:

- A. the family Salmonidae in the class Osteichthyes
- B. a second family in the class Osteichthyes, preferably a commercially or recreationally important warmwater species (e.g., bluegill, channel catfish, etc.)
- C. a third family in the phylum Chordata (may be in the class Osteichthyes or may be an amphibian, etc.)
- D. a planktonic crustacean (e.g., cladoceran, copepod, etc.)
- E. a benthic crustacean (e.g., ostracod, isopod, amphipod, crayfish, etc.)
- F. an insect (e.g., mayfly, dragonfly, damselfly, stonefly, caddisfly, mosquito, midge, etc.)
- G. a family in a phylum other than Arthropoda or Chordata (e.g., Rotifera, Annelida, Mollusca, etc.)
- H. a family in any order of insect or any phylum not already represented.

Table 3. Modified acute HC₀₅ for glyphosate calculated following the U.S. EPA (1985) methodology.

N	Rank	GMAV	ln(GMAV)	ln(GMAV) ²	P=R/(N+1)	sqrt(P)
9	4	19,384	9.872	97.46	0.4000	0.6325
	3	13,259	9.492	90.11	0.3000	0.5477
	2	13,000	9.473	89.73	0.2000	0.4472
	1	12,855	9.461	89.52	0.1000	0.3162
	Sum:		38.30	366.8	1.000	1.944
	$S^2 =$	2.13				
	L =	8.865				
	A =	9.192				
	FAV =	9,816				

Table 4. Comparison of acute values for glyphosate.

Magnitude relative to ALB is the OPP ALB/OW value, the ratio for the OPP value/OW value for each value comparison. A ratio <1 indicates the OPP value is lower than the OW value and a ratio >1 indicates the OPP value is higher than the OW value.

Pesticide	OPP Most Sensitive ALB (Year published, species)	OW GLI Tier II value (# of MDRs filled, magnitude relative to ALB)	OW Modified HC05/2 (# of MDRs filled, # of genera available, magnitude relative to ALB)
Glyphosate	11,900 μg/L (2016; <i>Lemna gibba;</i> vascular plant)	1,607 μg/L (GLI Tier II; 4 MDRs filled, 7.4X)	4,908 μg/L (4 MDRs, 9 genera, 2.4X)

Figure 1 shows a genus-level sensitivity distribution for the glyphosate dataset. Major taxonomic groups are delineated by different symbols. Lines denoting the OPP acute benchmark values, GLI Tier II calculated acute value, and modified HC_{05} value are included.

Figure 1. Glyphosate genus-level acute SD.

Symbols represent Genus Mean Acute Values (GMAVs) calculated using all available data from the Office of Pesticide Programs (OPP) registration review document for glyphosate (U.S. EPA 2009).

2.1.5.2 Glyphosate Chronic Toxicity Data

Data Sources and Considerations

Chronic toxicity data for glyphosate were obtained from OPP's registration review document for glyphosate (U.S. EPA 2009). The final chronic glyphosate dataset consisted of NOECs/LOEC for six species (Table 5).

Table 5. Chronic toxicity data of glyphosate to freshwater aquatic organisms	. (MDR
specifies OW minimum data requirements under the Guidelines.)	

MDR	Species	NOAEC	LOAEC	SMCV	GMCV	MRID
Plant	Cyanobacterium (Anabaena flos-aquae)			12000	12000	40236904
Plant		12000				44320639
D	Waterflea (Daphnia magna)	49900	95700	69104	69104	124763
D		240000				
Plant	Duckweed (Lemna gibba)			7560	7560	44320638
Plant		7560	14100			45773101
Plant						40236905
Plant	Diatom (Navicula peliculosa)			18000	18000	40236902
Plant		18000				44320641
В	Fathead Minnow (Pimephales promelas)	>25700		> 25700	> 25700	108171
Plant	Green algae (Raphidocelis subcapitata)			10000	10000	4023690
Plant						40236901
Plant		10000				44320637

^a OW MDR Groups – Freshwater:

A. the family Salmonidae in the class Osteichthyes

B. a second family in the class Osteichthyes, preferably a commercially or recreationally important warmwater species (e.g., bluegill, channel catfish, etc.)

C. a third family in the phylum Chordata (may be in the class Osteichthyes or may be an amphibian, etc.)

D. a planktonic crustacean (e.g., cladoceran, copepod, etc.)

E. a benthic crustacean (e.g., ostracod, isopod, amphipod, crayfish, etc.)

F. an insect (e.g., mayfly, dragonfly, damselfly, stonefly, caddisfly, mosquito, midge, etc.)

G. a family in a phylum other than Arthropoda or Chordata (e.g., Rotifera, Annelida, Mollusca, etc.)

H. a family in any order of insect or any phylum not already represented.

OPP Chronic Benchmark Values

The OPP vascular plant benchmark value for glyphosate is $1,300 \mu g/L$. There is no OPP nonvascular benchmark plant value for glyphosate.

The OPP invertebrate chronic benchmark value is 49,900 μ g/L, which is the NOEC for *Daphnia magna*.

The OPP fish chronic benchmark value is 25,700 μ g/L, which is the NOEC for *Pimephales promelas*.

GLI Tier II Chronic Value Calculation

Paired quantitative acute and chronic toxicity data were available for *Pimephales promelas* and *D. magna / C. plumosus* allowing for the calculation of two ACRs. Per the GLI Tier II methodology, the default value of 18 was used to fulfill the remaining one ACR. The resulting *Pimephales promelas* and *D. magna / C. plumosus* ACR are 3.77 and 1.94, respectively, and the final SACR is 5.09. Dividing the SAV of 1,607 μ g/L by the SACR of 5.09 results in a Secondary Continuous Value of 315.6 μ g/L, and a Secondary Continuous Concentration of 316 μ g/L.

Detailed calculations for the SCV are shown below:

SACR = Geometric Mean of the ACRs
SACR =
$$\sqrt[3]{3.77 * 1.94 * 18} = 5.09$$

SCV = $\frac{SAV}{SACR}$
SCV = $\frac{1,607}{5.09} = 316 \,\mu g/L$

Modified Chronic HC05

The genus-level modified chronic HC05 calculated following the U.S. EPA (1985) methodology for the four most sensitive genera regardless of taxa (Table 6) in the glyphosate dataset was $5,087 \mu g/L$ (Table 7).

· · ·					
Genus	Species	SMCV	GMCV	GMCV Rank	MDR Group
Daphnia	magna	69,104	69,104	6	D
Pimephales	promelas	>25,700	>25,700	5	В
Navicula	peliculosa	18,000	18,000	4	Plant
Anabaena	flos-aquae	12,000	12,000	3	Plant
Raphidocelis	subcapitata	10,000	10,000	2	Plant
Lemna	gibba	7,560	7,560	1	Plant

Table 6. Glyphosate SMCVs and GMCVs (µg/L).

^a OW MDR Groups – Freshwater:

A. the family Salmonidae in the class Osteichthyes

B. a second family in the class Osteichthyes, preferably a commercially or recreationally important warmwater species (e.g., bluegill, channel catfish, etc.)

C. a third family in the phylum Chordata (may be in the class Osteichthyes or may be an amphibian, etc.)

D. a planktonic crustacean (e.g., cladoceran, copepod, etc.)

E. a benthic crustacean (e.g., ostracod, isopod, amphipod, crayfish, etc.)

F. an insect (e.g., mayfly, dragonfly, damselfly, stonefly, caddisfly, mosquito, midge, etc.)

G. a family in a phylum other than Arthropoda or Chordata (e.g., Rotifera, Annelida, Mollusca, etc.)

H. a family in any order of insect or any phylum not already represented.

N	Rank	GMCV	ln(GMCV)	ln(GMCV) ²	P=R/(N+1)	sqrt(P)
6	4	18,000	9.798	96.00	0.5714	0.7559
	3	12,000	9.393	88.22	0.4286	0.6547
	2	10,000	9.210	84.83	0.2857	0.5345
	1	7,560	8.931	79.76	0.1429	0.3780
	Sum:		37.33	348.8	1.429	2.323
	$S^2 =$	5.00				
	L =	8.035				
	A =	8.534				
	FCV =	5,087				

Table 7. Modified chronic HC₀₅ for glyphosate calculated following the U.S. EPA (1985) methodology.

Table 8. Summary and comparison of chronic values for glyphosate.

Magnitude relative to ALB is the OPP ALB/OW value, the ratio for the OPP value/OW value for each value comparison. A ratio <1 indicates the OPP value is lower than the OW value and a ratio >1 indicates the OPP value is higher than the OW value.

Pesticide	Most Sensitive OPP ALB (Year published and species)	OW GLI Tier II value (# of ACRs filled, magnitude relative to ALB)	OW Modified HC ₀₅ (# of MDRs filled, # of genera available, magnitude relative to ALB)
Glyphosate	1,300 μg/L (<i>Lemna gibba;</i> vascular plant)	316 μg/L (GLI Tier II; 2 ACRs filled, 4.1X)	5,087 μg/L (2, MDRs, 6 genera, 0.26X)

Figure 2 shows a chronic genus-level sensitivity distribution for the glyphosate dataset. Major taxonomic groups are delineated by different symbols. Lines denoting the OPP chronic benchmark values, GLI Tier II calculated chronic value, and modified HC₀₅ value are included.

Figure 2. Glyphosate genus-level chronic SD.

Symbols represent Genus Mean Chronic Values (GMCVs) calculated using all available data from the Office of Pesticide Programs (OPP) registration review document for glyphosate (U.S. EPA 2009).

2.1.5.3 Glyphosate References

MRID 108171. Chronic toxicity of glyphosate to the Fathead Minnow (Pimephales promelas Rafinesque). Unpublished study conducted by EF& G Bionomics Aquatic Toxicology Laboratory, Wareham, MA. Study sponsored by Monsanto Company, St Louis, Missouri. 0178-041-06 / 097759-5-8.

MRID 124763. McKee, R.J., W.A McAllister, and M. Schofield. 1982. Chronic Toxicity of Glyphosate (AB-82-036) to Daphnia magna Under Flow-through Test Conditions. Unpublished study conducted by Analytical Bio-Chemistry Laboratories, Columbia, Missouri. Report No. AB-82-036.Study sponsored by Monsanto Chemical Company, St. Louis, Missouri. Study completed September 9, 1982.

MRID 162296. Folmar, L.C., H. O. Sanders and A.M. Julin. 1979. Toxicity of the herbicide glyphosate and several of its formulations to fish and aquatic invertebrates. Arch. Environn. Contam. Toxicol 8: 269-278.

MRID 4023690. Incomplete MRID (see MRID 40236901).

MRID 40236901. Hughes, J.S. 1987. Volume I: The Toxicity of Glyphosate Technical to Selenastrum capricornutum. Unpublished study conducted by Maclolm Pirnie, Inc., White Plains, NY. Laboratory Project ID 1092-02-1100-1. Study sponsored by Monsanto Agricultural Company, Chesterfield, Missouri. Study completed April 27, 1987.

MRID 40236902. Hughes, J.S. 1987. Volumen II: The Toxicity of Glyphosate Technical to Navicula pelliculosa. Unpublished study conducted by Maclolm Pirnie, Inc., White Plains, NY. Laboratory Project ID 1092-02-1100-2. Study sponsored by Monsanto Agricultural Company, Chesterfield, Missouri. Study completed April 20, 1987.

MRID 40236904. Hughes, J.S. 1987. Volume IV: The toxicity of Glyphosate Technical to Anabaena flos-aquae. Unpublished study conducted by Malcolm Pirnie, Inc. White Plains, NY. Laboratory Project ID 1092-02-1100-4. Study sponsored by Monsanto Agricultural Company, Chesterfield, Missouri. Study completed April 20, 1987.

MRID 40236905. Hughes, J.S. 1987. Volume V: The Toxicity of Glyphosate Technical to Lemna gibba. Unpublished study conducted by Maclolm Pirnie, Inc., White Plains, NY. Laboratory Project ID 1092-02-1100-5. Study sponsored by Monsanto Agricultural Company, Chesterfield, Missouri. Study completed April 13, 1987.

MRID 44125704. Ward, T.J., J.P. Magazu and R.L. Boeri. 1996. Acute toxicity of Glygran WDG to the Fathead Minnow. Pimephales promelas. Unpublished study conducted T.R. Wilbury Laboratories, Inc, Marblehead, MA. Study No. 1008-LP. Sponsored by Lewis and Harrison, Washington, DC. Study complected August 2, 1996.

MRID 44125705. Boeri, R.L., J.P. Magazu, and T.J. Ward. 1996. Acute Toxicity of Glygran WDG to the Rainbow Trout, Oncorhynchus mykiss. Unpublished study conducted by T.R. Wilbury Laboratories, Inc, Marblehead, MA. Study No. 1056-LH. Sponsored by Lewis and Harrison, Washington, DC. Study complected August 2, 1996.

MRID 44320629. Kent, S.J., D.S. Morris, J.E. Caunter and S.K. Comish. 1995. Glyphosate Acid: Acute Toxicity to Rainbow Trout (Oncorhynchus mykiss). Unpublished study conducted by Brixham Environmental Laboratory, ZENACA Limited, Devon, UK. Laboratory ID BL5552/B. Study sponsored by ZENECA Ag Products, Wilmington, DE. Study completed on September 15, 1995.

MRID 44320630. Kent, S.J., J.E. Caunter, D.S. Morris, and P.A. Johnson. 1995. Glyphosate Acid, Acute Toxicity to Bluegill Sunfish (Lepomis macrochirus). Unpublished study conducted by Brixham Environmental Laboratory, ZENACA Limited, Devon, UK. Laboratory ID BL5553/B. Study sponsored by ZENECA Ag Products, Wilmington, DE. Study completed on November 24, 1995.

MRID 44320631. Morris, D.S., S.J. Kent, A.J. Banner, and S.J. Wallace. 1995. Glyphosate Acid: Acute Toxicity to Daphnia magna. Unpublished study conducted by Brixham Environmental Laboratory, Zenaca Limited, Devon, UK Laboratory Project ID BL5551/B. Study sponsored by ZENACA Ag Products, Wilmington, DE. Study completed July 26, 1995.

MRID 44320637. Smyth, D.V., S.J. Kent, D.S. Morris, D.J. Morgan, and S.E. Magor. 1995. Unpublished study conducted by Brixham Environmental Laboratory, ZENACA Limited, Devon, UK. Laboratory ID BL5550/B. Study sponsored by ZENECA Ag Products, Wilmington, DE. Study completed on August 12, 1995.

MRID 44320638. Smyth, D.V., S.J. Kent, D.S. Morris, S.K. Comish, and N. Shillabeer. 1996. Glyphosate Acid: Acute Toxicity to Duckweed (Lemna gibba). Unpublished study conducted by Brixham Environmental Laboratory, Zenaca Limited, Devon, UK Laboratory Project ID BL5662/B. Study sponsored by ZENACA Ag Products, Wilmington, DE. Study completed January 31, 1996.

MRID 44320639. Smyth, D.V., N. Shillabeer, D.S. Morris, and S.J. Wallace. 1996. Glyphosate Acid: Toxicity to Blue-green alga (Anabaena flos-aquae). Unpublished study conducted by Brixham Environmental Laboratory, Zenaca Limited, Devon, UK. Laboratory Project ID BL5698/B. Study sponsored by ZENACA Ag Products, Wilmington, DE. Study completed March 9, 1996.

MRID 44320641. Smyth, D.V., S.J. Kent, D.S. Morris, P.A. Johnson, and N. Shillabeer. 1996. Glyphosate Acid: Toxicity to the Freshwater Diatom (Navicula pelliculosa). Unpublished study conducted by Brixham Environmental Laboratory, ZENACA Limited, Devon, UK. Laboratory ID BL5673/B. Study sponsored by ZENECA Ag Products, Wilmington, DE. Study completed on February 3, 1996.

MRID 45773101. Boeri, R.L. and T.J. Ward. 2002. Glyphosate Acid: Toxicity to the Duckweed, Lemna sp. Unpublished study conducted by T.R. Wilbury Laboratories, Inc, Marblehead, MA. Study Number 2066-LH. Study sponsored by Industria Prodotti Chimici, S.p.A, Milanese, Italy. Study completed July 9, 2002.

Saka, M., N. Tada, and Y. Kamata. Chronic Toxicity of 1,3,5-Triazine Herbicides in the Postembryonic Development of the Western Clawed Frog *Silurana tropicalis*. Ecotoxicol. Environ. Saf.147:373-381, 2018. ECOREF #178499

U.S. Environmental Protection Agency. Pesticide Ecotoxicity Database (Formerly: Environmental Effects Database (EEDB)). Environmental Fate and Effects Division, U.S.EPA, Washington, D.C., 1992. ECOREF #344.

U.S. Environmental Protection Agency. 2024. Draft Comparison of Aquatic Life Protective Values Developed for Pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Clean Water Act (CWA). EPA-820-D-24-002.