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A. APPENDIX A | INFORMATION QUALITY AND PEER REVIEW PROCEDURES 

A.1 Ensuring Information Quality  
The FrEDI Technical Documentation, framework, underlying analyses, and associated R package were 
developed in accordance with EPA’s Guidelines for Ensuring and Maximizing the Quality, Objectivity, Utility, 
and Integrity of Information Disseminated by the Environmental Protection Agency,1 which follows Office of 
Management and Budget (OMB) guidelines2 and implements the Information Quality Act (IQA) (Section 515 
of Public Law 106–554).3  

In accordance with OMB definitions, EPA defines the basic standard of information “quality” by its 
objectivity, integrity, utility, and transparency. For products meeting a higher standard of quality, like this 
product, the Agency requires an appropriate level of transparency regarding data and methods in order to 
facilitate the reproducibility of information by qualified third parties. The EPA uses various established 
Agency processes (e.g., the Quality System, peer review requirements and processes) to ensure the 
appropriate level of objectivity, utility, integrity, and transparency for its products, based on the intended 
use of the information and the resources available. Sections below describe how the technical 
documentation and associated R code meet each requirement. 

Objectivity focuses on whether the disseminated information is being presented in an accurate, clear, 
complete, and unbiased manner, and as a matter of substance, is accurate, reliable, and unbiased. The 
technical documentation and associated R code meet this standard for objectivity, due to activities 
described in the following:  

a) The information disseminated is determined to be complete, accurate, and reliable based on 
internal quality control measures adopted by the expert modeling teams. This includes quality 
checks throughout the chain of analytic steps, including developing and processing climate 
projections, calibrating and validating the sectoral impact models, and checking data to ensure that 
no errors occur in the process to compile and summarize results. The FrEDI R code package also 

 
1 EPA, 2002: Guidelines for ensuring and maximizing the quality, objectivity, utility, and integrity of information 
disseminated by the Environmental Protection Agency. United States Environmental Protection Agency, EPA/260R-02-008. 
Available online at https://www.epa.gov/sites/default/files/2020-02/documents/epa-info-quality-
guidelines_pdf_version.pdf. 
2 OMB, 2002: Office of Management and Budget Information Quality Guidelines. Executive Office of the President, Office of 
Management and Budget. Available online at https://www.whitehouse.gov/wp-
content/uploads/legacy_drupal_files/omb/assets/OMB/inforeg/iqg_oct2002.pdf. 
3 The IQA requires the Office of Management and Budget and federal agencies to issue guidelines that “ensur[e] and 
maximize[e] the quality, objectivity, utility, and integrity of information (including statistical information) disseminated by 
Federal agencies” (Public Law 106-554; 44 U.S.C. 3516, note). The IQA does not impose its own standard of “quality” on 
agency information; instead, it requires only that an agency “issue guidelines” ensuring data quality. Following guidelines 
issued by the Office of Management and Budget, EPA released its own guidelines to implement the IQA: “Guidelines for 
Ensuring and Maximizing the Quality, Objectivity, Utility, and Integrity of Information Disseminated by the Environmental 
Protection Agency.” 

https://nam04.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.epa.gov%2Fsites%2Fdefault%2Ffiles%2F2020-02%2Fdocuments%2Fepa-info-quality-guidelines_pdf_version.pdf&data=05%7C02%7CJWillwerth%40indecon.com%7Cf0b6df8c70d34efcc1b808dcc7594a03%7C1bd2d8462e6e44918f6b0e4ae69a00f0%7C1%7C0%7C638604433577674572%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=BuzKRwUnD%2FABb1vwIPQwmtC9RGdeA6gb2GwmweWqzmc%3D&reserved=0
https://nam04.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.epa.gov%2Fsites%2Fdefault%2Ffiles%2F2020-02%2Fdocuments%2Fepa-info-quality-guidelines_pdf_version.pdf&data=05%7C02%7CJWillwerth%40indecon.com%7Cf0b6df8c70d34efcc1b808dcc7594a03%7C1bd2d8462e6e44918f6b0e4ae69a00f0%7C1%7C0%7C638604433577674572%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=BuzKRwUnD%2FABb1vwIPQwmtC9RGdeA6gb2GwmweWqzmc%3D&reserved=0
https://nam04.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.whitehouse.gov%2Fwp-content%2Fuploads%2Flegacy_drupal_files%2Fomb%2Fassets%2FOMB%2Finforeg%2Fiqg_oct2002.pdf&data=05%7C02%7CJWillwerth%40indecon.com%7Cf0b6df8c70d34efcc1b808dcc7594a03%7C1bd2d8462e6e44918f6b0e4ae69a00f0%7C1%7C0%7C638604433577688447%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=Bz2Xa3iTBFN1m2K3mW5%2F4Z92iN5HRz%2Fsa6rX%2BVSsKC8%3D&reserved=0
https://nam04.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.whitehouse.gov%2Fwp-content%2Fuploads%2Flegacy_drupal_files%2Fomb%2Fassets%2FOMB%2Finforeg%2Fiqg_oct2002.pdf&data=05%7C02%7CJWillwerth%40indecon.com%7Cf0b6df8c70d34efcc1b808dcc7594a03%7C1bd2d8462e6e44918f6b0e4ae69a00f0%7C1%7C0%7C638604433577688447%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=Bz2Xa3iTBFN1m2K3mW5%2F4Z92iN5HRz%2Fsa6rX%2BVSsKC8%3D&reserved=0
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includes a series of automatic quality control tests to ensure the code runs as expected and to flag 
changes to the FrEDI outputs relative to a benchmark run to assist in additional quality control 
review. 

b) The information disseminated is determined to be clear, complete, and unbiased based on multiple 
rounds of independent review. Consistent with guidelines described in EPA’s Peer Review 
Handbook,4 the underlying sectoral modeling methodologies are peer-reviewed through scientific 
journal publication processes. Citations for these publications can be found throughout the main 
technical documentation and its appendices. In addition, aspects of the FrEDI technical 
documentation and associated R package have also been subject to external journal publication 
processes (Sarofim et al., 2021, Hartin et al., 2023).  

c) The FrEDI technical documentation and associated R code have been subject to both public review 
and external peer review. See Sections A.3 and A.4 for details about the peer and public reviews 
conducted in 2021 and 2024.  

Integrity refers to security of information, such as the protection of information from unauthorized access 
or revision, to ensure that the information is not compromised through corruption or falsification. The 
technical documentation, framework, R code, and underlying analyses meet the standard for integrity due 
to the strategic steps taken to ensure that the data and information remained secure. These steps included 
the use of password protected data storage repositories, password protected data transfer technology, and 
multiple layers of data validation checks to ensure that the integrity was not compromised.  

Utility is the usefulness of the information to the intended users. The technical documentation, framework, 
R code, and underlying analyses meet the standard for utility because the information disseminated 
provides insights (technical methods for quantifying physical and economic impacts) regarding the potential 
magnitude of the impacts of climate change. Understanding the risks posed by climate change can inform 
broader assessment reports and policy decisions designed to address these risks. See section 1.2 of the 
main technical documentation for a discussion of other example applications and intended uses.  

Transparency ensures access to and description of (1) the source of the data, (2) the various assumptions 
employed, (3) the analytic methods applied, and (4) the statistical procedures used. The report and its 
underlying analyses meet the standard for transparency for the following reasons:  

a) The underlying datasets, sectoral impact models, and the methods supporting the framework and 
associated R package have been published with open access in the peer-reviewed scientific 
literature and are cited throughout the report. These papers, along with their online supplementary 
materials, provide detailed information on the sources of data used, assumptions employed, the 
analytic and statistical methods applied, and important limitations regarding the approaches and/or 
how the results should be interpreted.  

 
4 EPA, 2015: Peer Review Handbook, 4th Edition, 2015. United States Environmental Protection Agency, Programs of the 
Office of the Science Advisor.  
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b) Appendix B for this Technical Documentation provides details on how results and output from each 
sectoral impact model (or impacts study) are formatted and adapted for usage in the framework 
and R code. This Appendix contains descriptions of the methodologies used in estimating impacts, 
assumptions used, and citations to the underlying literature where the reader can go for more 
information.  

c) The R package for FrEDI has been posted as a public repository on the USEPA GitHub website. 
Updates to the FrEDI R code are published as tagged releases, accompanied by release notes that 
summarize each update.  See https://www.github.com/USEPA/FrEDI. Additional documentation on 
the R package components, as well as general information about downloading and running the 
FrEDI R package are posted on the following website: https://usepa.github.io/FrEDI. 

d) Both the 2021 and 2024 versions of the Technical Documentation were subject to a public comment 
period to ensure interested stakeholders had a chance to review and provide input on the 
framework and tool methods. 

e) Reponses to all comments received during both the 2021 and 2024 public comment periods are 
publicly posted. See https://cfpub.epa.gov/si/. Search using the report title or ‘FrEDI’. 

f) Responses to all comments received during both the 2021 and 2024 independent, expert peer 
reviews have been posted on EPA’s Science Inventory. See https://cfpub.epa.gov/si/. Search using 
the report title or ‘FrEDI’. During their review period, expert peer reviewers were provided a copy of 
all comments received from the public comment period.  

A.2 Consideration of Assessment Factors 
When evaluating the quality, objectivity, and relevance of scientific and technical information, the 
considerations that EPA takes into account can be characterized by five general assessment factors, as 
found in A Summary of General Assessment Factors for Evaluating the Quality of Scientific and Technical 
Information, and the Guidance for Evaluating and Documenting the Quality of Existing Scientific and 
Technical Information.5 The following section lays out how the assessment factors are considered to 
determine whether models and data in the technical documentation, framework, R package, and 
underlying analyses are acceptable for their intended use. 

 
5 USEPA. 2003. A Summary of General Assessment Factors for Evaluating the Quality of Scientific and Technical Information, 
and the Guidance for Evaluating and Documenting the Quality of Existing Scientific and Technical Information. Science 
Policy Council U.S. Environmental Protection Agency Washington, DC. EPA 100/B-03/001 

https://www.github.com/USEPA/FrEDI
https://usepa.github.io/FrEDI
https://cfpub.epa.gov/si/
https://cfpub.epa.gov/si/
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TABLE A-1. SUMMARY OF QUALITY ASSESSMENT FACTORS 

Factor Description How the Factor was Considered 

Soundness 

The extent to which the 
scientific and technical 
procedures, measures, 
methods or models 
employed to generate 
the information are 
reasonable for, and 
consistent with, the 
intended application. 

• Used publicly available (to the maximum extent practicable) data, 
reviewed for quality and accuracy with complete metadata available. 

• Used data included in peer-reviewed publications. Ensured evaluation of 
the scientific and technical procedures, measures, and methods 
employed to generate estimates produced by sectoral impact models.  

• Considered the capabilities of integrated assessment, simple climate, and 
sectoral impacts models to examine changes in physical effects, 
economic damages, and changes in risk from climate change in a manner 
consistent with sound scientific theory and accepted approaches.  

• Considered the extent to which underlying models and data had been 
previously applied in projects of similar scope, such as the Climate 
change Impacts and Risk Analysis (CIRA) project. For example, the 
BenMAP model has been used in similar climate and health impact 
analyses, and the labor analysis has been employed in other multi-sector 
modeling projects (e.g., Hsiang et al. 2017). 

• Considered whether the data and code are available, made available by 
EPA, or determined to not be feasible as it is claimed as proprietary by a 
non-federal business. 

• Selected sectoral impacts models with the following criteria: sufficient 
understanding of how climate change affects the sector; the existence of 
data to support the methodologies; availability of modeling applications 
that could be applied in the FrEDI framework; based on peer reviewed 
literature and datasets; and the economic, iconic, or cultural significance 
of impacts and damages in the sector to the U.S. 

Applicability 
and Utility 

The extent to which the 
information is relevant 
for the Agency’s 
intended use. 

• Ensured that FrEDI uses applicable and relevant inputs and considers the 
capabilities of the integrated assessment, simple climate model, and 
sectoral impacts models to examine changes in physical effects, 
economic damages, and risk associated with climate change. 

• Ensured that FrEDI and its underlying analyses are relevant to their 
intended use so that the information disseminated provides insights and 
methods for quantifying the physical and economic impacts of climate 
change at national, regional, and state levels.  

• Ensured sectoral impacts models are reasonable for, and consistent with, 
the intended application by being sufficiently flexible to ensure 
consistency in inputs and monetizing physical impacts.  

• Ensured that models have been applied in peer-reviewed, published 
studies. 

Clarity and 
Completeness 

The degree of clarity 
and completeness with 
which the data, 
assumptions, methods, 
quality assurance, 

• Ensured use of clear and complete inputs by considering the extent to 
which sectoral impacts models documented their key methods, 
assumptions, parameter values, limitations, sponsoring 
organizations/author affiliations, and funding information.  
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Factor Description How the Factor was Considered 
sponsoring 
organizations and 
analyses employed to 
generate the 
information are 
documented. 

• Ensured publications clearly and comprehensively describe analytic 
methods used and how they apply and build off existing bodies of 
research and underlying scientific and/or economic theories. 

Uncertainty 
and Variability 

The extent to which the 
variability and 
uncertainty 
(quantitative and 
qualitative) in the 
information or in the 
procedures, measures, 
methods or models are 
evaluated and 
characterized. 

• Ensured inputs that appropriately characterize uncertainty and variability 
by considering the capabilities of sectoral impacts models to evaluate 
and characterize key sources of variability and uncertainty. Results of 
these analyses are described in the underlying journal articles. 

• Reviewed the model documentation and peer-reviewed publications to 
determine if a model is sufficiently flexible and capable of evaluating 
important sources of uncertainty for climate change impacts analysis.  

• Documented outcomes of sensitivity and uncertainty analyses, where 
applicable, in the presentation of results using ranges and confidence 
intervals. 

• Addressed key sources of uncertainty by developing a flexible 
framework, as described in Chapter 2.   

Evaluation and 
Review 

The extent of 
independent 
verification, validation 
and peer review of the 
information or of the 
procedures, measures, 
methods or models. 

• Ensured use of independently verified and validated inputs by 
considering the extent to which models have been independently peer 
reviewed.  

• Reviewed the documentation associated with each model and 
determined if they have been independently peer-reviewed and 
published in scientific journals with procedures to ensure that the 
methods are technically supportable, properly documented, and 
consistent with established quality criteria.  

• Used scenarios and projections that have been independently verified 
and validated (e.g., scenarios and projections developed for the IPCC and 
its assessments, and then downscaled for the U.S. for used in the 
National Climate Assessment). 
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A.3 Review Process for the 2021 Technical Documentation 
Consistent with guidelines described in EPA’s Peer Review Handbook,6,7 the 2021 Technical Documentation 
was subject to a public review comment period, and an independent, external expert peer review that 
concluded with the publication of the original Technical Documentation in October 2021. The peer and 
public review documentation is available at EPA’s Science Inventory.  

The 2021 Technical Documentation was subject to a public comment period to ensure that the information 
summarized by EPA was technically supported, competently performed, properly documented, consistent 
with established quality criteria, and communicated clearly. This public review period was also intended to 
provide feedback and comments on the framework's utility. Similarly, the purpose of the expert peer 
review by independent, qualified, and objective experts was to ensure that the information summarized by 
EPA was technically supported, competently performed, properly documented, consistent with established 
quality criteria, and communicated clearly. The sectoral impact models underlying the technical 
documentation, as well as the temperature binning approach used in the FrEDI framework were previously 
peer reviewed and published in the research literature.  

Public Review Period 

A 30-day public comment period was held from April 15th through May 17th, 2021. All comments received 
were carefully reviewed, considered, and responded to. 

Expert Peer Review 

The expert review was managed by a contractor (ICF International) under the direction of a designated 
independent EPA peer review leader, who prepared a peer review plan, the scope of work for the review 
contract, and the charge for the reviewers. Importantly, the EPA peer review leader played no role in 
producing any portion of the report. Reviewers worked individually (i.e., without contact with other 
reviewers, colleagues, or EPA) to prepare written comments in response to the charge questions. The 
reviewers were also provided with the public review comments for informational purposes. 

The contractor identified, screened, and selected five reviewers who had no conflict of interest in 
performing the review, and who collectively met the technical selection criteria provided by EPA. 

The peer review charge directed reviewers to provide responses to the following questions during the main 
review: 

 
6 EPA, 2015: Peer Review Handbook, 4th Edition, 2015. United States Environmental Protection Agency, Programs of the 
Office of the Science Advisor. Available online at https://www.epa.gov/osa/peer-review-handbook-4th-edition-2015  
7 EPA has determined that the 2021 Technical Documentation report fell under the classification of “influential scientific 
information,” as defined by OMB and further described in the EPA Peer Review Handbook. The 2021 Documentation was 
for science dissemination and communication purposes only, and does not reflect analysis of nor recommendations 
regarding any particular policy. 

https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=351316&Lab=OAP&simplesearch=0&showcriteria=2&sortby=pubDate&searchall=FrEDI&timstype=&datebeginpublishedpresented=03/02/2021
https://www.epa.gov/osa/peer-review-handbook-4th-edition-2015
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1. Does the introductory chapter clearly explain the purpose of the report and provide appropriate 
context for the rest of the documentation? If not, please provide recommendations for 
improvement. 

2. The report has been written for an educated and semi-technical audience. Are the writing level and 
graphics appropriate for these audiences? 

3. Does the report adequately explain the overall analytic framework of the temperature binning 
approach? 

4. Do the text, figures, and tables clearly communicate the framework’s structure and design? Are the 
requirements for input data, and the options for output/results summaries, clearly stated? 

5. Does the report clearly convey both the conceptual basis for temperature binning and the specific 
data processing and analytic steps taken to execute the concept?  Is it clear how both the EPA-
sponsored CIRA sector studies, and other non-CIRA studies, can be incorporated in the framework? 

6. Is the sector-specific approach to account for the role of socioeconomic driver data clear? Is it 
reasonable and well-supported? 

7. Is the approach to estimating sector-specific and aggregate economic impact (damages) of specified 
temperature trajectories reasonable and suitable for the stated purposes? 

8. Does the report adequately inform the reader about how uncertainty is addressed in the 
framework, including how results should be interpreted and used given the limitations? 

9. Has EPA objectively used, applied, and documented the underlying data of the temperature binning 
framework? Has the Agency appropriately described the sensitivity of the findings to analytic 
assumptions? 

10. Is the draft technical documentation report missing important information based on your review of 
the report? 

11. Report Format: Please comment on whether any aspects of the layout help or hinder the reader to 
understand the content and key messages of the report. 

A.4 Review Process for the 2024 Technical Documentation 
Consistent with guidelines described in EPA’s Peer Review Handbook,8,9 the 2024 Technical Documentation 
was subject to a public review comment period, and an independent, external expert peer review that 
concluded with the publication of the 2024 Technical Documentation in August 2024. The peer and public 
review documentation is available at EPA’s Science Inventory. Reviewers were charged with focusing on the 
updates to the FrEDI Technical Documentation and associated R package since the 2021 publication. Key 
aspects included the addition of several new sectoral impact categories, additional state-level impact 
calculations, and two modules for extending the default FrEDI framework: one module to extend FrEDI to 
calculate impacts through 2300 and a second Social Vulnerability module that extended the dimensionality 

 
8 EPA, 2015: Peer Review Handbook, 4th Edition, 2015. United States Environmental Protection Agency, Programs of the 
Office of the Science Advisor. Available online at https://www.epa.gov/osa/peer-review-handbook-4th-edition-2015  
9 EPA has determined that this report falls under the classification of “influential scientific information,” as defined by OMB 
and further described in the EPA Peer Review Handbook. This product is for science dissemination and communication 
purposes only, and does not reflect analysis of nor recommendations regarding any particular policy. 

https://cfpub.epa.gov/si/si_public_record_Report.cfm?Lab=OAP&dirEntryId=360384
https://www.epa.gov/osa/peer-review-handbook-4th-edition-2015
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of FrEDI to provide a distributional analysis of climate change impacts to different population groups within 
the U.S. through 2100. 

Public Review Period 

A 60-day public comment period was held from February 23rd through April 24th, 2024. All comments 
received were carefully reviewed, considered, and responded to. 

Expert External Peer Review 

The expert review was managed by a contractor (ICF International) under the direction of a designated 
independent EPA peer review leader, who prepared a peer review plan, the scope of work for the review 
contract, and the charge for the reviewers. Importantly, the EPA peer review leader played no role in 
producing any portion of the report. Reviewers worked individually (i.e., without contact with other 
reviewers, colleagues, or EPA) to prepare written comments in response to the charge questions.  

The contractor identified, screened, and selected four reviewers who had no conflict of interest in 
performing the review, and who collectively met the technical selection criteria provided by EPA. 

The peer review charge directed reviewers to provide responses to the following questions during the main 
review: 

General FrEDI 

Consistent with the guidelines described in EPA’s Peer Review Handbook, the FrEDI Technical 
Documentation and accompanying R package were subject to a public review comment period and an 
independent, external expert peer review in 2021. Since the 2021 Report, seven peer-reviewed sectoral 
impact studies have been pre-processed and implemented into FrEDI’s analytical framework. FrEDI’s pre-
processing and run-time steps have also been updated to output FrEDI data for 48 U.S. states, in addition to 
regional and national totals. Lastly, additional features have been implemented into the FrEDI R package 
that extend FrEDI calculations past the year 2100 and incorporate calculations of differential climate 
change risks across U.S. demographics. The updated 2024 Technical Documentation describes the 
underlying FrEDI framework, which remains unchanged since the 2021 review, but now also provides 
additional methodological information on the standard approach for incorporating new impacts, the 
process for generating FrEDI results at finer geographic scales, and updated Appendices describing new 
sectoral studies. The following questions are related to these general topics. 

1. Has EPA clearly used, applied, and documented the data underlying FrEDI and does the Technical 
Documentation adequately explain how these data are used in the FrEDI framework?  

2. The Technical Documentation (Main Text and Appendix B) describe how data from sectoral impact 
studies have been processed to develop state-level damage functions for use in FrEDI.  

a. Does the Technical Documentation clearly convey the conceptual basis and pre-processing 
steps used to develop impact-by-degree damage functions at the state-level and how these 
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functions are used within FrEDI to project climate change impacts at the state, regional, and 
national geographic scales?  

b. Are the projected state-level climate change impacts clearly illustrated in Chapter 3? If not, 
are there alternative approaches for presenting the state-specific impact data that would 
improve the communication of future climate change impacts to each U.S. state?  

3. Seven impact sector studies (CIL agriculture, CIL temperature-related mortality, ATS temperature-
related mortality, marine fisheries, CIL crime, suicide, vibriosis)10 have been incorporated into FrEDI 
since the 2021 peer-review.  

a. In Chapter 2 and Appendix B, has EPA clearly used, applied, and documented the data 
underlying these new sectoral studies and adequately explained how this information was 
pre-processed for use in the FrEDI R code? 

b. Does Chapter 2 clearly and sufficiently describe the conceptual basis and methodological 
process for the ongoing and long-term incorporation of additional impact studies and 
capabilities into future versions of the FrEDI R package? If not, please describe any 
additional information needed to clarify this approach or additional information EPA should 
consider documenting when incorporating new impacts into FrEDI. 

4. Are there additional categories of damages that are currently missing that EPA should consider for 
inclusion as damage functions within the FrEDI framework? If so, please mention any specific peer 
reviewed literature that could be used to inform the modeling of these additional impacts. 

5. Peer-reviewed sectoral impact studies are pre-processed to generate national, region, and state-
specific ‘impact-by-degree’ damage functions for use in FrEDI. As described in Chapter 2, each 
damage function is linearly extrapolated to higher degrees of warming than originally considered in 
each underlying study, so that FrEDI can be extended to assess impacts over a broader range of 
temperatures (and impacts in years past 210011). Other climate impact applications similarly extend 
information from peer-reviewed impacts studies to project damages across large temperature 
ranges (e.g., Rennert et al., 2021).  

6. Does EPA clearly describe the current approach used to extrapolate sectoral damage functions to 
temperature above the ranges provided by the underlying study data?  

7. Are there alternative and superior approaches that EPA should consider for extrapolating damage 
functions to warmer temperatures? If so, please describe the advantages (and any potential 
drawbacks) of these alternative extrapolation approaches. 

8. The FrEDI R package includes the ‘social vulnerability’ or ‘SV’ module for estimating several impact 
metrics, including future climate change impact rates across different demographics. The data and 
methods underlying this module are based on EPA’s recent report on Climate Change and Social 
Vulnerability in the United States, which was itself peer-reviewed prior to the report’s release in 2021. 
Do you have specific recommendations that EPA should consider as long-term improvements to the 

 
10 CIL – represents studies conducted by the Climate Impacts Lab, ATS – represents studies led by the American Thoracic 
Society. 
11 See Hartin et al. (2023) for an application of this approach to scenarios through the year 2300. 

https://www.epa.gov/cira/social-vulnerability-report
https://www.epa.gov/cira/social-vulnerability-report
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FrEDI SV module (e.g., different metrics, assumptions, analyses, etc.). If so, please describe the 
advantages (and any potential drawbacks) of any recommended changes or additions.  

9. Are there additional graphics or text that should be added to the Technical Documentation to improve 
the clarity of the methodological descriptions in Chapter 2 or Appendix B?  

FrEDI Analytical Applications 

Quantitative evidence of climate change and its impacts over time is a critical input to decision-making and 
policy development. In addition to the total magnitude of change, impact analyses that disaggregate 
impacts to finer sectoral and spatial scales also provide unique understanding and insight into how climate 
change risks may be experienced differently across the United States. For example, the impacts of climate 
change occurring in a particular region or community will be determined by local sensitivities to physical 
climate stressors (e.g., heat, wildfire, flooding), as well as the ability or capacity of each community to 
adapt. Chapter 1 provides an overview of how FrEDI can be applied to these types of analyses. Chapter 3 
further provides extended examples of how FrEDI output can be used to quantitatively project impacts of 
climate change and their distribution across U.S. states, sectors, and populations. 

The first application in Chapter 3 presents impacts for an example warming scenario while the second 
presents changes in impacts under a hypothetical warming mitigation scenario. This second mitigation 
scenario is designed to illustrate an assessment of the climate-related benefits to the U.S. associated with a 
hypothetical GHG emissions regulatory action. This information is relevant to regulatory cost-benefit 
analyses, for example, as stated by OMB Circular A-4 (2003)12, “The benefits and costs of a regulation are 
ultimately experienced by people. For some regulations, different groups of people may be impacted 
differently. Distributional analysis, whether quantitative or qualitative, can help illustrate these effects.” In 
addition, EPA’s Science Advisory Board (SAB) on a recent Agency rule13 also recognized that “The 
differential benefits of reduced greenhouse gas emissions are not captured by the average social cost of 
carbon value and therefore additional consideration of the distributional effects of reducing greenhouse gas 
emissions is warranted” and that “the EPA should utilize … the EPA CIRA program [precursor to FrEDI] for 
information on the disproportionate health impacts of climate change and consider greenhouse gas 
implications from the proposed rule.”  

The following questions are related to both FrEDI applications presented in Chapter 3.  

10. Does Chapter 3 clearly inform the reader how FrEDI output can be used to quantify ‘baseline’ 
climate change impacts to the U.S. that are associated with a single emissions (or temperature) 
scenario? If not, what additional documentation should EPA consider adding to this Chapter?  

11. Does Chapter 3 clearly describe how FrEDI can be applied within a broader analytical workflow to 
quantify the climate change-related benefits to the U.S. that are associated with a marginal change 
in GHG emissions (or temperature)? If not, what additional documentation should EPA consider 
adding to this Chapter? 

 
12 Circular No. A-4, Nov. 9, 2023 (https://www.whitehouse.gov/wp-content/uploads/2023/11/CircularA-4.pdf) 
13 EPA Science Advisory Board Letter to Administrator Regan, Final Science Advisory Board Regulatory Review Report of 
Science Supporting EPA Decisions for the Proposed Rule: Control of Air Pollution from New Motor Vehicles: Heavy-Duty 
Engine and Vehicle Standards (RIN 2060-AU41), EPA-SAB-23-001, December 15th, 2022. 
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12. Do the figures and text in Chapter 3 clearly illustrate how FrEDI can be used to assess and 
communicate disaggregated climate change impacts and climate-related benefits across FrEDI’s 
multiple impact category sectors, spatial scales, and population groups? Are there alternative 
graphics and/or clarifying text that EPA should consider adding to this Chapter to more clearly 
illustrate or communicate how climate-related impacts or benefits will be experienced by different 
groups across the U.S.? 

13. Chapter 3 also describes the application of the FrEDI SV module to assess the relative risk of climate 
change impacts across different population groups of concern and how relative risks may change 
under a hypothetical mitigation scenario. In order to effectively assess the change in 
disproportionate climate-related impacts in a hypothetical mitigation scenario, the FrEDI SV analysis 
should provide information that addresses the following questions: 

a. Are there potential Environmental Justice (EJ) concerns14 associated with future climate 
change under a baseline scenario? 

b. Are there potential EJ concerns associated with future climate change, under a specific GHG 
emissions reduction scenario?  

c. Are the potential EJ concerns exacerbated, mitigated, or unchanged when GHG emissions 
are reduced compared to the baseline scenario? 

14. To what extent does the SV analysis in Chapter 3 describe and illustrate how FrEDI output can be 
applied to address these three questions? Are there alternative and superior approaches to 
presenting FrEDI output that EPA should consider including to more clearly address these three 
questions? If so, please describe the advantage (and potential drawbacks) of any alternative 
approaches. 

 
14 Potential Environmental Justice Concern defined as “disproportionate impacts on minority populations, low-income 
populations, and/or indigenous peoples that may exist prior to or that may be created by the proposed regulatory action”. 
EPA Technical Guidance for Assessing Environmental Justice in Regulatory Analyses, 2016. 
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B.1 Sectoral Impact Category Data Overview 
This appendix provides additional detail on the sectoral impact studies included in the FrEDI framework. 
The main advantage of FrEDI is that it offers the unique flexibility to incorporate a broad range of peer-
reviewed climate impact studies into a common analytical framework, as implemented by the FrEDI R code. 
While details of each study vary, there are a series of similar steps used to pre-process and format the 
results from each study into the impact-by-degree damage functions that are used in FrEDI. Common pre-
processing steps often include: 1) the aggregation of underlying study impact data to the state level, 2) the 
isolation of climate-driven impacts by subtracting baseline impacts, and 3) binning the annual impacts (or 
impact rates) by temperature for each available GCM (temperature binning discussed in Appendix C) to 
calculate the final by-degree damage functions that are then used when the FrEDI R code is run. 

Consistent with Chapter 3 in the Main Documentation, individual impact sectors in this Appendix are 
organized and grouped into six aggregate categories: Health, Infrastructure, Electricity, Ecosystems & 
Recreation, Labor, and Agriculture. Table B-1 lists each individual impact sector by aggregate group, 
summarizes the geographic coverage of each impact within the Contiguous U.S. (CONUS), and lists the 
GCMs used in the underlying sectoral impact models that form the basis of FrEDI’s damage functions. Main 
text Table 2 (impact types, socioeconomic drivers, adaptation scenarios), Table 4 (links to population and 
GDP inputs), Table 5 (time dependent scalars), and Table 6 (valuation measures) also provide summarized 
information about the impact sectors.
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TABLE B-1. REGIONAL COVERAGE AND GCMS USED BY SECTOR 
  Regional Coveragea  GCMs Used 
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Health 

Climate-Driven CHanges in Air Quality          1 1          
Extreme Temperature        1 1 1 1 1 1    
CIL Temperature-Related Mortality                
ATS Temperature-Related Mortality                
Southwest Dust        1 1 1 1 1 1    
Valley Fever        1 1 1 1 1 1    
Wildfire        1 1  1 1 1    
CIL Crime                
Vibriosis                
Suicide                

Infrastructure 

Coastal Properties                     1 
Transportation Impacts from HTF                      1 
Rail        1 1 1 1 1 1    
Roads        1 1 1 1 1 1    
Asphalt Roads              b   
Urban Drainage        1 1   1 1 1    
Inland Flooding              c  
Hurricane Wind Damage              d  

Electricity Electricity Demand and Supply        1 1 1 1 1 1    
Electricity Transmission and Distribution        1 1 1 1 1 1    

Ecosystems and 
Recreation 

Water Quality        1 1   1 1 1    
Winter Recreation        1 1 1 1 1 1    
Marine Fisheries                 

Labor Labor        1 1 1 1 1 1    
Agriculture CIL Agriculture                

Notes:  a. Sectors listed for a specific NCA region do not necessarily include non-zero impacts for all states within that region. See the tables in the sector-specific sections below 
for details on states with non-zero impacts. 
b. Asphalt Roads, a study not designed within the CIRA framework, utilized three GCMs in common with the CIRA2.0 set of scenarios (CanESM2, CCSM4, MIROC5) however, the 
climate data used in the underlying study was bias corrected and downscaled using a different process than the method used in CIRA. Therefore, although the GCMs are the same, 
the integer degree arrival times differ slightly for this sector.  
c. The Inland Flooding sector used an ensemble of 14 GCMs (list provided in detailed write-up below), which includes four of the six GCMs from the CIRA2.0 set of scenarios 
(CanESM2, GFDL-CM3, HadGEM2-ES, MIROC5). The authors estimated arrival times and provided estimates of impacts by degree of warming for the mean of 14 GCM results. 
d. The Hurricane Wind sector uses four of the six standard CIRA GCMs (CCSM4, GFDL-CM3, HadGEM2-ES, MIROC5) and MRI-CGCM3 to follow the underlying literature Marsooli et 
al. (2019). Similar to Asphalt Roads, the climate data used in the Hurricane Winds study was bias corrected and downscaled using a different process than the method used in 
CIRA. Therefore, although the GCMs are the same, the integer degree arrival times differ slightly for this sector. Unlike Marsooli et al. (2019), FrEDI does not include MPI5 due to 
data availability constraints. 
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Figure B-1 and Figure B-2 present the monetized sectoral damages in FrEDI by degrees of CONUS warming, 
as they are derived from each underlying impact study. Damages are presented by degree of warming for 
each temperature-driven impact category sector and by centimeter of Global Mean Sea Level (GMSL) rise 
for each sea level rise (SLR)-driven sector. These results (for illustrative purposes only) are calculated using 
the default socioeconomic inputs for 2090. These figures are shown to illustrate the relative magnitude of 
damages in each impact sector, by GCM, and the final shape of the CONUS damage functions (i.e. the sum 
of all state-level damages functions) after valuation scalars have been applied. Note that the GCMs in each 
underlying study do not all reach the same level of future warming. Therefore, FrEDI’s sector-specific 
damage functions are derived from a piece-wise linear fit between integer degrees of warming for the 
range of warming degrees available from each GCM (e.g., shown by solid lines in Figure B-1 and each 
impact-by-degree figure in this Appendix), and are linearly extrapolated (as described in Section 2.3 of the 
Main Documentation) to higher levels of warming (shown by dashed lines in each impact-by-degree figure).  

Application of the FrEDI framework is not limited to the current impact sectors. New sectors that meet the 
requirements outlined in Chapter 2 of the Main Documentation can be added to the framework following 
the process documented in Chapter 2. This expansion in sectoral scope remains a high priority for future 
updates. This appendix will be updated over time as additional sectoral studies and their functions are 
incorporated into FrEDI. 
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FIGURE B-1. NATIONAL ECONOMIC IMPACTS BY DEGREE OF WARMING IN 2090 BY SECTOR FOR DEFAULT 
TEMPERATURE-DRIVEN SECTORS 

 
Impacts by CONUS degree of warming (Celsius) relative to the 1986-2005 average baseline, under 2090 socioeconomic 
conditions, in trillions (top row) and billions of $2015 U.S. Dollars (USD) for the default FrEDI sectors driven by temperature. 
Results for Roads, Rail, and Electricity Transmission and Distribution Infrastructure reflect the primary adaptation scenarios 
(see Section 2.2 of the Main Text). Each series represents the GCMs available in each underlying study where dashed lines 
represent extrapolations above available integer degree warming. Sectors are ordered by their level of average 5-degree 
impacts. Not all sectors include estimates for all models listed in the legend—for details on which models are included by 
sectors, see Table B-1. Note that the y-axis scalar varies by row. Figure produced using results from FrEDIv4.1. 
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FIGURE B-2. NATIONAL ECONOMIC IMPACTS BY CENTIMETER OF GMSL FOR SLR-DRIVEN SECTORS 

 
Impacts by centimeter of GMSL rise relative to a year 2000 baseline, in billions of $2015 USD. Each data point represents an 
annual impact based on one of six GMSL rise scenarios from Sweet et al. (used in the underlying models). The two series 
show results by year each GMSL is reached. Results for Transportation Impacts from High Tide Flooding and Coastal 
Properties reflect the default adaptation scenarios (see Section 2.2 in the main report). Each series represents the underlying 
sea level rise scenario. Figure produced using results from FrEDIv4.1. 

For each sectoral impact category, the following sections include a description of the impacts considered, a 
reference to the underlying impact sector study, a description of the pre-processing steps used to derive 
sectoral damage functions, details about implementation into the FrEDI R code, and discussion of any 
limitations. To show GCM variability, impacts-by-degree of warming are shown for the GCMs used in each 
underlying study. In addition, for sectors that are projected to scale with temperature (or SLR) and 
socioeconomic conditions (i.e., population and GDP), impacts-by-degree are also provided for two example 
socioeconomic scenarios (e.g., 2010 and 2090) to illustrate the sensitivity of the impacts to changes in 
socioeconomics. 
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B.2 Health Sectors  

Climate-Driven Changes in Air Quality 

Summary  

This sectoral study estimates mortality risk 
associated with climate-driven changes in 
air quality in the CONUS; specifically, ozone 
and fine particulate matter (PM2.5) 
concentrations. 

This analysis uses air quality surfaces (i.e., concentrations in response to changes in meteorology) and 
concentration-response functions employed by Fann et al. (2021) to quantify future PM2.5- and ozone-
attributable premature mortality. Air quality concentration changes are driven by changes in climate only 
and do not reflect time-varying changes in pollutant precursor emissions. Mortality is monetized using the 
value of statistical life (VSL). In this context, VSL refers to an individual's willingness to pay for a small 
reduction in the risk of their own premature death within each future year, calculated as the population 
average for each country. Future estimates of VSL are calculated each year following Eq. B-1 by referencing 
the EPA 199015 VSL for the U.S. (adjusted for income growth and inflation to $9.8 million in 2015 dollars16) 
and scaling relative to U.S. income (represented by GDP per capita) in 2010. Income elasticity (ε) is a user-
defined parameter but is set to 1 as default, following Hammitt and Robinson (2011) and Rennert et al. 
(2022a), such that projected changes in VSL are proportional to average national income.17 Due to limited 
availability of socioeconomic projections, we approximate future changes in income as national GDP per 
capita, consistent with previous similar studies, using user input (or FrEDI default) projections of U.S. GDP 
and population. 

As the projected climate-driven changes will be sensitive to changes in pollutant precursor emissions (e.g., 
nitrogen oxides, sulfur dioxide, carbonaceous aerosol, ammonia, etc.), two simulated air pollutant 
emissions inventories are also considered as variants: a 2011 dataset that estimates unrestricted pollution 
burden from all sources as of that year, and a 2040 dataset that accounts for the implementation of a suite 
of regulatory policies on stationary and mobile emissions sources. For illustrative purposes, plots of 

 
15 U.S. Environmental Protection Agency. (2010). Guidelines for preparing economic analyses. Appendix B. Retrieved from 
https://www.epa.gov/environmental-economics/guidelines-preparing-economic-analyses 
16 U.S. Environmental Protection Agency (EPA). (2023). Supplementary Material for the Regulatory Impact Analysis for the 
Final Rulemaking, “Standards of performance for new, reconstructed, and modified sources and emissions guidelines for 
existing sources: Oil and natural gas sector climate review, Supplementary Material for the Regulatory Impact Analysis”, 
EPA Report on the Social Cost of Greenhouse Gases: Incorporating Recent Scientific Advances, Retrieved from 
https://www.epa.gov/system/files/documents/2023-12/epa_scghg_2023_report_final.pdf  
17 Hammitt, J. K., & Robinson, L. A. (2011). The income elasticity of the value per statistical life: transferring estimates 
between high and low income populations. Journal of Benefit-Cost Analysis, 2(1).; Rennert, K., Errickson, F., Prest, B. C., 
Rennels, L., Newell, R. G., Pizer, W., et al. (2022). Comprehensive evidence implies a higher social cost of CO2. Nature, 
610(7933), 687-692. 

UNDERLYING DATA SOURCES AND LITERATURE 

Fann, N. L., Nolte, C. G., Sarofim, M. C., Martinich, J., & 
Nassikas, N.J. (2021). Associations between simulated future 
changes in climate, air quality, and human health. JAMA 
Network Open, 4(1). 
Doi:10.1001/jamanetworkopen.2020.32064 

https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2023EF003853?af=R#eft21403-bib-0014
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2023EF003853?af=R#eft21403-bib-0033
https://www.epa.gov/system/files/documents/2023-12/epa_scghg_2023_report_final.pdf
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resulting impacts by temperature degree for PM2.5 (top) and ozone (bottom) are shown in Figure B-3, 
calculated using 2010 (A) and 2090 (B) socioeconomics (the end points of socioeconomics), and for each of 
the emission inventory variants-. 

FIGURE B-3. AIR QUALITY IMPACTS BY TEMPERATURE BIN DEGREE 
A. 2010 SOCIOECONOMICS 
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B. 2090 SOCIOECONOMICS 

 

 
Total impacts ($billions) by degree (°C) for each impact type and variant for two socioeconomic snapshots (2010 and 2090 
using the default scenarios). The extrapolated portions of the impact function are shown with a dashed line. Note the figure 
scale varies by plot. 
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Processing steps  

TABLE B-2. INPUT DATA CHARACTERISTICS: CLIMATE DRIVEN CHANGES IN AIR QUALITY 

Data Features Study Attributes 

Evaluated Impacts • Mortality: premature deaths per capita from Ozone and PM2.5 (physical) 
• Value of premature mortality, Ozone and PM2.5 (economic) 

Variants • 2011 Air Pollutant Emissions Level 
• 2040 Air Pollutant Emissions Level 

Data Shape • Four eras 
• Two GCMs (CCSM4 and GFDL-CM3) 
• 26-km grid cell 
• Two pollutants (ozone and PM2.5) 

Model Type18 • Simulation and Empirical 
Runs Provided • With climate change and with population growth 
Additional Data • None 
Regions and States with Impacts • All CONUS regions and states 

Processing steps are illustrated in Figure B-4. To derive impact-by-degree-damage functions, EPA’s Benefits 
Mapping and Analysis Program – Community Edition (BenMAP-CE19) is first used to generate total mortality 
results using the same data inputs as from Fann et al. (2021). For example, the air quality exposure data 
(for each 36-km CONUS grid cell) was provided by study authors by era, GCM, pollutant (ozone/PM2.5), and 
emissions inventory (2011/2040). This exposure data is available for four eras (2030, 2050, 2075, 2095), 
derived from two CMIP5 climate models (CCSM4 and GFDL-CM3). Concentration-response functions used 
within BenMAP-CE to derive mortality counts from air pollutant exposure levels are also the same as those 
used in Fann et al. (2021), which are based on risk model information for those age 30-99 for PM2.5 and 
those age 0-99 for ozone. Therefore, to derive total mortality estimates for FrEDI (1st pre-processing step in 
Figure B4), BenMAP-CE was used with these study data inputs to derive mortality impacts at the state level 
for each era, GCM, pollutant, and emissions inventory scenario. 

 
18 The term "empirical" model is used to refer to a statistically estimated relationship between a climate stressor (such as 
temperature) and a physical or economic impact outcome, based on historical data. Epidemiological and most econometric 
analyses both fit this model type. The term "simulation" model is used to refer to a process-based or engineering model of 
a system which uses physical, ecological, or physics-based relationships to model a system of interacting elements which 
may be influenced by climate or weather variables, such as temperature or precipitation. Simulation models may include or 
be constructed from certain types of process-based crop yield, air quality, or water quality models; engineering models 
such as fragility curves; or ecosystem models such as thermally available habitat relationships. Some sector studies may 
combine use of both models, such as the air quality sector, which incorporates a process-based simulation of air quality 
with epidemiological functions for health effects estimation. These models are used in simulation exercises within FrEDI as 
they are applied to future climatic conditions through 2100 or 2300. 
19 Sacks JD, Lloyd JM, Zhu Y, et al. The Environmental Benefits Mapping and Analysis Program—Community Edition 
(BenMAP-CE): a tool to estimate the health and economic benefits of reducing air pollution. Environ Model Softw. 
2018;104:118-129. doi:10.1016/j.envsoft.2018.02.009 
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In the second pre-processing step (second box in Figure B4) total state mortality counts are divided by 
dynamic state population from the Integrated Climate and Land Use Scenarios, v2 (ICLUSv2) dataset20, to 
acquire per capita mortality estimates for each era and state. The original exposure levels provided in Fann 
et al., (2021) already accounted for baseline incidence and therefore no additional processing was needed 
to isolate climate impacts for use in FrEDI. In the last pre-processing step (fourth box in Figure B4), era-level 
per capita mortality impacts are assigned to the central year of the era (i.e., 2030, 2050, 2075, and 2095), 
and impacts for remaining years are derived by interpolating linearly between central era years. Finally, to 
bin the results by temperature degree and derive impact-by-degree functions, the yearly mortality per 
capita impacts for each pollutant impact type (ozone/PM2.5) are averaged across the 11-year windows 
where each GCM reaches each integer degree of CONUS warming relative to the baseline. 

FIGURE B-4. CLIMATE-DRIVEN CHANGES IN AIR QUALITY PROCESSING FRAMEWORK 

 

 
20 Bierwagen, B., Theobald, D.M., Pyke, A., Choate, A.P., Thomas, J.V., Morefield, P., 2010. 2010: National housing and 
impervious surface scenarios for integrated climate impact assessments. Proc. Natl. Acad. Sci. 107; EPA, 2017. Updates to 
the Demographic and Spatial Allocation Models to Produce Integrated Climate and Land Use Scenarios (Iclus) (Version 2) 
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When FrEDI is run, the pre-processed by-degree per capita mortality functions are then applied to the input 
temperature scenario to calculate the unadjusted annual per capita impacts based on the level of warming 
in each year of the input scenario. The total annual physical mortality counts are then calculated by 
applying these annual per capita rates to the input population scenario. Lastly, annual mortality counts are 
monetized using the VSL, calculated at runtime from input GDP per capita. VSL is adjusted for changes in 
GDP per capita using an income elasticity function21 (Eq. B-1):  

𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡 =  𝑉𝑉𝑉𝑉𝑉𝑉2010 × ( 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑡𝑡
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺2010

)𝑒𝑒𝑒𝑒𝐺𝐺𝑒𝑒𝑡𝑡𝑒𝑒𝐺𝐺𝑒𝑒𝑡𝑡𝑒𝑒  (Equation B-1) 

Limitations and Assumptions 

• PM2.5-attributable premature mortality is quantified for those age 30 and older, and this analysis 
assumes the impacts for those under 30 to be zero. Doing so underestimates the risk of premature 
mortality experienced by those under 30. Additionally, doing so assumes that age demographics 
remain proportional over the century. 

• This analysis does not quantify morbidity effects associated with changes in PM2.5 and ozone, which 
are likely to increase as temperature increases. Changes in air quality can provoke hospital 
admissions for respiratory diseases and worsen other conditions. 

• For further discussion of the limitations and assumptions in the underlying sectoral modeling 
approach, see Fann et al. (2021). 

Extreme Temperature 

Summary  

This sector addresses the impact of extreme 
temperature on premature mortality in 49 major U.S. 
cities. In the 2010 Census, the 49 cities accounted for 
91.3 million of the total U.S. population of 309.3 
million, or nearly 30 percent. Economic damages are 
based on extreme heat and cold mortality rates, 
monetized by applying GDP per capita-adjusted VSLs.  

The underlying epidemiologic model from Mills et al., (2014) includes runs with ‘adaptation’ and with ‘no 
additional adaptation’ scenarios. The adaptation scenario does not reflect a benefit-cost calculation but an 
assumption that U.S. cities will gradually adapt to a hotter environment through physical acclimatization of 
their residents, infrastructure replacement with more heat suitable shading and air conditioning, and 

 
21 This is a generic elasticity function that can be used in a time-series fashion, as used here, or for cross-sectional benefits 
transfers, as in the example in Masterman and Viscusi (2018), “The Income Elasticity of Global Values of a Statistical Life: 
Stated Preference Evidence”, Journal of Benefit-Cost Analysis, 9(3):407-434. Note that the current default elasticity is 1.0 
but can be set by the user as an input to the R code.  

UNDERLYING DATA SOURCES AND 
LITERATURE 

Mills, D., Schwartz, J., Lee, M., Sarofim, M., Jones, 
R., Lawson, M., Duckworth, M., & Deck, L. (2014). 
Climate Change Impacts on Extreme Temperature 
Mortality in Select Metropolitan Areas in the 
United States. Climatic Change, 131, 83-95. 

 



Technical Documentation for the Framework for Evaluating Damages and Impacts (FrEDI)  

                Page B-10 

behavioral changes, so that the stressor-response will look like that of the current Dallas context.22 The 
original estimates are provided for 49 cities. For illustrative purposes, Figure B-5 shows the resulting 
damages by degree of warming for both the extreme heat and cold related mortality variants (top and 
bottom panels), both adaptation scenarios (left and right plots), and six GCMs, calculated using 2010 (panel 
A) and 2090 (panel B) socioeconomics (i.e., the endpoints of the socioeconomic scenarios). 

 
22 The adaptation scenario was considered in Mills et al. (2014) and U.S. EPA. (2017). “Multi-Model Framework for 
Quantitative Sectoral Impacts Analysis: A Technical Report for the Fourth National Climate Assessment.” (EPA 430-R-17-
001; p. 271). More refined adaptation scenarios for this sector, including the costs and efficacy of increased air conditioning 
market penetration, are the subject of active and ongoing research. Some research has found the efficacy of cooling centers 
can be high in preventing extreme heat mortality, but surveys and current experience suggest that many residents are 
unwilling to use formal cooling centers. For at least some of the cities evaluated in Mills et al. (2014), the empirical data 
reflects the availability, if not the widespread use, of cooling centers to residents.  
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FIGURE B-5. EXTREME TEMPERATURE IMPACTS BY TEMPERATURE BIN DEGREE 

A. 2010 SOCIOECONOMICS 
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B. 2090 SOCIOECONOMICS  

 
Total impacts ($billions) by degree (°C) for each impact type and variant for two socioeconomic snapshots (2010 and 2090 
using the default scenarios). The extrapolated portions of the impact function are shown with a dashed line. Note the figure 
scale varies by plot. 

Processing steps 

TABLE B-3. INCOMING DATA CHARACTERISTICS: EXTREME TEMPERATURE 

Data Features Extreme Temperature Attributes 

Evaluated Impacts  • Mortality: premature deaths per capita (physical) 
• Value of premature mortality (economic) 

Variants • Adaptation 
• No additional adaptation 

Data Shape • Degree 
• Six GCMs (standard CIRA set) 

• Two variants 
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Data Features Extreme Temperature Attributes 

• Two impact types 
• Two impact years 
• State level 

Model Type • Empirical 
Runs Provided • 2010 population with climate change 

• 2090 population with climate change 
Additional Data • Baseline mortality by state 
Regions and States with Impacts • Midwest (excluding IA) 

• Northeast (excluding DE, ME, NH, RI, VT, WV) 
• Northwest (excluding ID) 
• Southeast (excluding AR, KY, MS, SC, VA) 
• Southern Plains (excluding KS) 
• Southwest (excluding NV) 

Processing steps are shown in Figure B-6. Total mortality data are provided by the study authors by degree, 
GCM, city, damage type (heat/cold mortality), and base population (2010/2090). These original city-level 
mortality counts are then summed to counts for each CONUS state. In the next pre-processing step, the 
incremental impacts of climate change are isolated by subtracting baseline mortality counts from the 
counts in each degree bin. The original model in Mills et al. (2014) was run under two constant population 
assumptions: 2010 and 2090 estimates from ICLUSv223, which vary in total population and the distribution 
of population across modeled cities. In the third pre-processing step, state mortality counts from the two 
population scenarios (and for hot and cold impacts and two adaptation scenarios) are divided by 
population for the modeled cities in each state to obtain a mortality per capita estimate for each 
population scenario (2010/2090) by state, GCM, adaptation variant, and extreme heat and cold impact 
type. The last step is to calculate a population scalar to account for the fraction of each state's population 
living in the 49 study cities, by taking the ratio of the modeled city population to the total state population 
from ICLUSv2 (i.e., FrEDI default population scenario) for each state in 2010 and 2090.  

 
23 Bierwagen, B., Theobald, D.M., Pyke, A., Choate, A.P., Thomas, J.V., Morefield, P., 2010. 2010: National housing and 
impervious surface scenarios for integrated climate impact assessments. Proc. Natl. Acad. Sci. 107; EPA, 2017. Updates to 
the Demographic and Spatial Allocation Models to Produce Integrated Climate and Land Use Scenarios (Iclus) (Version 2) 



Technical Documentation for the Framework for Evaluating Damages and Impacts (FrEDI)  

                Page B-14 

FIGURE B-6. EXTREME TEMPERATURE DATA PROCESSING FRAMEWORK 

 

When FrEDI is run, the pre-processed, by-degree per capita mortality functions are applied to the input 
temperature scenario to calculate the unadjusted annual per capita impacts based on the level of warming 
in each year of the input scenario. The total annual physical mortality counts are then calculated by 
applying these annual per capita rates to the input population scenario. State population inputs are 
translated to city populations using the population scalars derived from the ICLUSv2 population scenarios in 
2010 and 2090 and interpolated for years in between. Lastly, annual mortality counts are monetized using 
the VSL, calculated at runtime from input GDP per capita (Eq. B-1). 

Limitations and Assumptions 

• National per capita averages are based on the total population of modeled cities with extreme heat 
and cold impacts. There are certain cities in the Southeast (Atlanta, Broward-Ft. Lauderdale, Miami, 
Orlando), Southern Plains (Austin, Dallas), and Southwest (Albuquerque, Los Angeles, Phoenix, San 
Diego) regions that are modeled for adaptation to heat but are not modeled for adaptation to 
extreme cold. It is assumed that these cities have minimal extreme cold damages, and therefore 
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their populations are included in the denominator as part of the total population over which cold 
damages are averaged. 

• This analysis only considers health impacts to individuals living in 49 cities within the CONUS and 
therefore omits a large fraction of the population vulnerable to extreme temperatures. 

• Cities that only experienced extreme cold in the historic period, notably those in the Northwest 
region, do not show an increase in extreme-temperature related mortality in this analysis. This 
result is an artifact of the methodology, which relies on observed temperature thresholds based on 
a historic period. With increased temperatures, it is likely that many of these Northwestern cities 
could experience heat-related mortality as well, which might be reflected if a different impact 
estimation methodology had been applied. 

• This analysis does not include morbidity outcomes. While the valuation of mortality outcomes far 
outweighs morbidity outcomes, morbidity is a common outcome associated with extreme heat. 

• For further discussion of the limitations and assumptions in the underlying sectoral model, please 
see Mills et al. (2014) and U.S.EPA’s 2017 Multi-Model Framework for Quantitative Sectoral Impacts 
Analysis. 

CIL Temperature-Related Mortality 

Summary  

This sector addresses the impact of climate-
driven temperature changes on premature 
mortality across all of CONUS using an 
alternative method to the Extreme 
Temperature study (Mills et al. (2014)) and 
ATS Temperature-Related Mortality (Cromar 
et al. (2021)). The Climate Impact Lab (CIL) 
Temperature-Related Mortality estimates 
rely on the development of a function linking 
extreme temperatures to excess mortality 
incidence, using a method first established in 
Deschenes and Greenstone (2011), updated 
in Barreca et al. (2016), and refined to 
develop projections of future impacts by 
GCM and RCP through the 21st century in 
Hsiang et al. (2017). 

Economic damages are based on the net effect of extreme heat and cold mortality rates, monetized by 
applying the VSL. Although the original Hsiang et al. (2017) application held VSL constant through time, the 
VSL used in FrEDI changes as a function of annual per capita income. The spatial domain of the study is all 
of CONUS, and as a result this work addresses temperature-related mortality for a population 

UNDERLYING DATA SOURCES AND LITERATURE 

Deschênes, O., Greenstone, M. (2011). Climate Change, 
Mortality, and Adaptation: Evidence from Annual Fluctuations in 
Weather in the US. American Economic Journal: Applied 
Economics 3(4): 152–185. 

A. Barreca, K. Clay, O. Deschênes, M. Greenstone, J. S. Shapiro, 
(2016). Adapting to Climate Change: The Remarkable 
Decline in the US Temperature-Mortality 
Relationship over the Twentieth Century. J. Polit. Econ. 124, 
105–159 (2016). 

S. Hsiang, R. Kopp, A. Jina, J. Rising, M. Delgado, S. Mohan, D. J. 
Rasmussen, R. Muir-Wood, P. Wilson, M. Oppenheimer, K. 
Larsen, T. Houser. (2017) Estimating economic damage from 
climate change in the United States Science 356: 1362–1369 
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approximately three times larger than the Mills et al. (2014) work. As shown in Hsiang et al. (2017), 
consideration of the net effect of changes in both cold and heat related mortality results in a net increase in 
mortality rates attributed to temperature changes in southern areas of CONUS, and a net decrease in 
mortality rates in northern areas of CONUS. As in Hsiang et al. (2017), we rely on the premature mortality 
estimates dose derived from survival function components of the Deschenes and Greenstone (2011) paper 
(i.e., the mortality dose response function with respect to temperature) and apply a VSL consistent with the 
FrEDI framework (Eq. B-1). The willingness-to-pay valuation component in Deschenes and Greenstone 
(2011) was not adopted for this work. 

To date, the CIL study authors have shared data for the “without additional adaptation” scenario, which is 
currently included in FrEDI. FrEDI results from this sector study therefore reflect damages when considering 
current rates of air conditioning penetration. We anticipate that future revisions of FrEDI could incorporate 
a “with adaptation” variant from this sector study, based in part on the findings of Barreca et al. (2016) that 
show a large impact of air conditioning in reducing the rate of heat-related mortality in the historical (1900-
2004) period, with extensions to forecast air conditioning penetration rates. The CIL study authors also 
shared results from uncertainty modeling in the underlying work, which were used to develop two 
additional damage functions for FrEDI that reflect the 90 percent confidence interval of the damages. 
Therefore, physical and economic damages from this study in FrEDI are available for the low and high end 
of the confidence interval (5th and 95th percentile values) as well as a central estimate which corresponds to 
the median result (50th percentile). 

For illustrative purposes, Figure B-7 shows a summary of the damages by degree of warming for the 
median and low and high confidence intervals, by GCM and for both 2010 (panel A) and 2090 (panel B) 
socioeconomics (i.e., the endpoints of the socioeconomic scenarios). 

FIGURE B-7. CIL TEMPERATURE-RELATED IMPACTS BY TEMPERATURE BIN DEGREE 
A. 2010 SOCIOECONOMICS 
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B. 2090 SOCIOECONOMICS 

 

 
Total impacts ($trillions) by degree (°C) for each variant for two socioeconomic snapshots (2010 and 2090 using the default 
scenarios). The extrapolated portions of the impact function are shown with a dashed line. Note the figure scale varies by 
plot. 

Processing steps 

TABLE B-4. INCOMING DATA CHARACTERISTICS: CIL TEMPERATURE-RELATED MORTALITY 

Data Features CIL Temperature-Related Mortality Attributes 

Evaluated Impacts  • Mortality: premature deaths per capita (physical) 
• Value of premature mortality (economic) 

Variants • Median 
• Low confidence interval 
• High confidence interval 

Data Shape • Year 
• Six GCMs (standard CIRA set) 

• Three variants 
• State level 

Model Type • Empirical 
Runs Provided • Without socioeconomic growth and with climate change 
Additional Data • Baseline mortality by state 
Regions and States with Impacts • All CONUS regions and states 

Processing steps are shown in Figure B-8. The Hsiang et al. (2017) study authors provided data on the 
incremental net change in per capita mortality under the RCP 8.5 scenario, by GCM, year, and state. These 
results reflect a single base socioeconomic scenario in 2012. Results are converted to annual incremental 
deaths due to climate change. The incoming results represent excess deaths due to climate change so no 
adjustment for the baseline is necessary. These data are then binned by degree by averaging across the 11-
year windows where each GCM reaches each integer degree of CONUS warming relative to the baseline. 
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Finally, total deaths are converted back to mortality rates, the scaled damage entered into FrEDI, using the 
ICLUSv2 populations. 

FIGURE B-8. CIL TEMPERATURE-RELATED MORTALITY DATA PROCESSING FRAMEWORK 

 
When FrEDI is run, the pre-processed by-degree per capita mortality functions are then applied to the input 
temperature scenario to calculate the unadjusted annual per capita impacts based on the level of warming 
in each year of the input scenario. The total annual physical mortality counts are then calculated by 
applying these annual per capita rates to the input population scenario. Lastly, annual mortality counts are 
monetized using the VSL, calculated at runtime from input GDP per capita (Eq. B-1). 

Limitations and Assumptions 

• The estimates included in FrEDI reflect a scenario of current air conditioning penetration rates, 
without expansion of air conditioning to mitigate health risks, consistent with the results initially 
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shared by the study authors. When results that reflect additional adaptation effort are shared, 
results for enhanced adaptation will be incorporated in future revisions of the tool. 

• The underlying studies focus on extreme temperature mortality impacts, and as noted in Deschenes 
and Greenstone (2011) excludes impacts of extreme temperature on morbidity, so likely 
underestimates the full effect of temperature on health.  

• The Hsiang et al. (2017) work includes adjustments to climate damages associated with general 
equilibrium impacts. While the general equilibrium effects estimate in that paper shows a lower 
economic impact for mortality when compared to the direct impact included in FrEDI, as the 
authors note the general equilibrium approach omits the large component of willingness to pay to 
avoid mortality risk that is captured in the VSL. For this reason, as in the underlying study, we omit 
the general equilibrium adjustment for mortality impacts. 

• The potentially broad scope of the mortality impact linked to temperature increases in the Hsiang 
et al. (2017) mortality analysis introduces the potential for overlap with some other sectoral results 
that associate temperature increases with mortality, most notably the Suicide sector. The reader is 
referred to Section 2.2, under the header Aggregation of Sectoral Impacts, for guidance on 
interpreting applications of FrEDI that include both of these sectors. 

• For further discussion of the limitations and assumptions in the underlying sectoral model, please 
see Deschenes and Greenstone (2011) and Hsiang et al. (2017). 

ATS Temperature-Related Mortality 

Summary 

This sector provides a measure of the impact 
of climate-driven change in temperature on 
premature mortality across all the CONUS, 
using an alternative method to that based on 
Mills et al. (2014) and the Hsiang et al., 
(2017) CIL study. While users can select to 
analyze impacts from any of the 
temperature-related mortality studies, the 
default FrEDI results use this study to assess 
climate-driven damages associated with 
changes in temperature-related mortality.  

The American Thoracic Society (ATS) 
Temperature-Related Mortality study 
developed a mortality impact function using 
meta-analysis of seven previously published U.S. studies of the connection between temperature change 
and excess mortality incidence, as well as other non-U.S. studies for results in other countries. The result of 
the meta-analysis is a set of globally applicable, region-specific impact functions calibrated to changes in 

UNDERLYING DATA SOURCES AND LITERATURE 

Cromar, K. R., Anenberg, S. C., Balmes, J. R., Fawcett, A. A., 
Ghazipura, M., Gohlke, J. M., Hashizume, M., Howard, P., Lavigne, E., 
Levy, K., Madrigano, J., Martinich, J. A., Mordecai, E. A., Rice, M. B., 
Saha, S., Scovronick, N. C., Sekercioglu, F., Svendsen, E. R., Zaitchik, 
B. F., & Ewart, G. (2022). Global Health Impacts for Economic 
Models of Climate Change: A Systematic Review and Meta-Analysis. 
Annals of the American Thoracic Society, 19(7), 1203–1212. 
https://doi.org/10.1513/AnnalsATS.202110-1193OC 

Rennert, K., Errickson, F., Prest, B. C., Rennels, L., Newell, R. G., 
Pizer, W., Kingdon, C., Wingenroth, J., Cooke, R., Parthum, B., Smith, 
D., Cromar, K., Diaz, D., Moore, F. C., Müller, U. K., Plevin, R. J., 
Raftery, A. E., Ševčíková, H., Sheets, H., … Anthoff, D. (2022). 
Comprehensive evidence implies a higher social cost of CO2. Nature, 
610(7933), 687–692. https://doi.org/10.1038/s41586-022-05224-9 
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average annual temperature. Based on guidance from the lead study author, we interpret the relevant 
average annual temperature to be a locally experienced exposure (i.e., CONUS temperature), which is also 
consistent with the relevant exposure metric applied in the seven U.S. studies to which the USA region 
results are calibrated. For this work, we rely on the estimates for the USA region only. 

Economic damages are based on the net effect of heat and cold-related mortality rates, monetized by 
applying the VSL. The original work did not attempt to project damages for any climate scenarios, or 
attempt valuation, but the VSL in FrEDI is applied as a function of per capita income (Eq. B-1). The spatial 
domain of the study is all of CONUS. As recommended by the study’s lead author, we apply an aggregated 
net function that reflects both reductions in cold-related mortality and increases in heat-related mortality 
as temperatures increase.24 We use county-scale estimates, and then aggregate to a net total effect by 
state. 

The ATS study also provides a standard error on the impact function relative risk coefficient, which was 
used to develop two additional damage functions that represent a 90 percent confidence interval around 
the excess risk parameter. As a result, the final physical and economic impacts from this sector study in 
FrEDI are available for the low and high end of the confidence interval (5th and 95th percentile values) as 
well as a central estimate which corresponds to the mean result. 

For illustrative purposes, Figure B-9 shows the resulting damages by degree of warming for the mean and 
high and low confidence intervals, by GCM, calculated using 2010 (panel A) and 2090 (panel B) 
socioeconomics (i.e., the endpoints of the socioeconomic scenarios). 

FIGURE B-9. ATS TEMPERATURE-RELATED IMPACTS BY TEMPERATURE BIN DEGREE 
A. 2010 SOCIOECONOMICS 

 

 
24 See Table 3 in Cromar et al. (2022) – the value used is the mean estimate for the USA and Canada region. Note that the 
table shows a mean beta value of 0.0046 (0.46%) – as confirmed by the study lead author, we use the value reported in the 
Supplemental Information of Rennert et al. (2022) of 0.464%. 
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B. 2090 SOCIOECONOMICS 

 
Total impacts ($trillions) by degree (°C) for each variant for two socioeconomic snapshots (2010 and 2090 using the default 
scenarios). The extrapolated portions of the impact function are shown with a dashed line. Note the figure scale varies by 
plot. 

Processing steps 

TABLE B-5. INCOMING DATA CHARACTERISTICS: ATS TEMPERATURE-RELATED MORTALITY 

Data Features ATS Temperature-Related Mortality Attributes 

Evaluated Impacts  • Mortality: premature deaths per capita (physical) 
• Value of premature mortality (economic)a 

Variants • Mean estimate 
• High confidence interval 
• Low confidence interval 

Data Shape • Integer degree (1-6) 
• Six GCMs (standard CIRA set) 
• County level 

Model Type • Empirical 
Runs Provided • With socioeconomic growth and with climate change 
Additional Data • None 
Regions and States with Impacts • All CONUS regions and states 
Notes: 
a. The underlying Cromar et al. and Rennert et al. studies provide a mean and 90 percent confidence interval beta coefficient for 
excess relative risk associated with temperature changes (see Eq. 2). FrEDI pre-processing steps develop the projected county level 
mortality incidence and rates for each GCM, consistent with the data shape stated in this table. 

Processing steps are shown in Figure B-10. Unlike most sectoral impacts where the underlying study 
provides either damages by degree or a trajectory of damages over time, the input ‘data’ from Cromar et 
al. (2022) are relative excess risk functions. Specifically, FrEDI uses the U.S.-specific relative risk functions 
(Eq B-2) for incremental annual mortality associated with the net effect of heat and cold-related mortality 
for each incremental change in annual average temperature (β= 0.464%, from Table 3 of Cromar et al. 
2022), and the standard errors of estimation for these functions. 
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(Equation B-2) 

Where ∆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 is the temperature change; 𝑌𝑌0 is the baseline mortality rate or incidence (at county scale); 
𝑃𝑃𝑃𝑃𝑇𝑇 is the county level population; β is as stated above, taken from the underlying study; and ∆𝑌𝑌 is the 
change in mortality (rate or incidence).  

Therefore, in the first and second pre-processing steps, the relative risk function is used with annual 
county-level mean temperatures (relative to the 1986-2005 baseline) for each temperature bin and GCM, 
county-level baseline mortality rates forecasted through the 21st century from EPA’s BenMAP model25, and 
default county-level populations from ICLUSv226 to calculate the net change in county-level mortality by 
degree and by GCM. The by-degree total county-level mortality counts are then aggregated to the state 
level, and converted to mortality rates (i.e., mortality per capita) by degree by dividing by the ICLUSv2 state 
population for each era of GCM integer degree of warming. This sector does not utilize any sector-specific 
scalars beyond FrEDI GDP and population inputs. Therefore, no scalar extensions are necessary to run the 
2300 extension module.  

 
25 EPA 2022, Environmental Benefits Mapping and Analysis Program – Community Edition, User’s Manual. January 2022, 
Updated for BenMAP-CE Version 1.5.8. Available at: https://www.epa.gov/sites/default/files/2015-04/documents/benmap-
ce_user_manual_march_2015.pdf 
26 Bierwagen, B., Theobald, D.M., Pyke, A., Choate, A.P., Thomas, J.V., Morefield, P., 2010. 2010: National housing and 
impervious surface scenarios for integrated climate impact assessments. Proc. Natl. Acad. Sci. 107; EPA, 2017. Updates to 
the Demographic and Spatial Allocation Models to Produce Integrated Climate and Land Use Scenarios (Iclus) (Version 2) 

∆𝑌𝑌 =  �1 − 𝑇𝑇−𝛽𝛽∆𝑇𝑇𝑒𝑒𝑇𝑇𝐺𝐺� ∗ 𝑌𝑌0 ∗ 𝑃𝑃𝑃𝑃𝑇𝑇 
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FIGURE B-10. ATS TEMPERATURE-RELATED MORTALITY DATA PROCESSING FRAMEWORK 

 

When FrEDI is run, the pre-processed by-degree per capita mortality functions are then applied to the input 
temperature scenario to calculate the unadjusted annual per capita impacts based on the level of warming 
in each year of the input scenario. The total annual physical mortality counts are then calculated by 
applying these annual per capita rates to the input population scenario. Lastly, annual mortality counts are 
monetized using the VSL, calculated at runtime from input GDP per capita (Eq. B-1). In addition to the mean 
results, this sector includes additional variants that reflect the 5th and 95th percentile results for the net 
impacts of cold and heat mortality. These estimates reflect statistical estimation uncertainty in the 
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underlying Cromar et al. (2022) study, reported as the standard error on the health impact function relative 
risk result (see underlying study, Table 3 for detail). 

Limitations and Assumptions 

• The estimates added to the FrEDI tool for this revision do not incorporate adaptations to 
temperature changes beyond measures reflected in current practices, as established in the seven 
underlying studies of the Cromar et al. (2022) meta-analysis.  

• The underlying studies focus on extreme temperature mortality impacts, and exclude impacts of 
extreme temperature on morbidity, so the Cromar et al. (2022) meta-analysis likely underestimates 
the full effect of temperature on health.  

• The potentially broad scope of the mortality impact linked to temperature increases in the Cromar 
et al. (2022) meta-analysis introduces the potential for overlap with some other sectoral results that 
associate temperature increases with mortality, most notably the Suicide sector. The reader is 
referred to Section 2.2, under the header Aggregation of Sectoral Impacts, for guidance on 
interpreting applications of FrEDI that include both of these sectors. 

• For further discussion of the limitations and assumptions in the underlying sectoral model, please 
see Cromar et al. (2022). 

Southwest Dust 

Summary 

This sectoral study estimates the health 
burden and associated economic value 
of that burden resulting from changes 
in exposure to fine and coarse airborne 
dust due to climate change in the 
Southwest.  

Damages are based on the change in incidence of multiple physical morbidity and mortality outcomes, 
including all Cardiovascular, Respiratory, and Mortality, as well as Emergency Department visits due to 
Asthma, and Acute Myocardial Infarction. These are monetized using direct hospitalization costs, indirect 
loss of income from hospitalization, costs of emergency department visits, and (for premature mortality) 
the VSL.  

For illustrative purposes, Figure B-11 shows the resulting damages by degree of warming for each of the 
five health endpoints (or impact types) by GCM, calculated using 2010 (panel A) and 2090 (panel B) 
socioeconomics (i.e., the endpoints of the socioeconomic scenarios). 

UNDERLYING DATA SOURCES AND LITERATURE 

Achakulwisut, P., Anenberg, S. C., Neumann, J. E., Penn, S. L., Weiss, N., 
Crimmins, A., Fann, N., Martinich, J., Roman, H. A., & Mickley, L. J. 
(2019). Effects of increasing aridity on ambient dust and public health in 
the U.S. southwest under climate change. GeoHealth, 3(5), 127-144. 
Doi:10.1029/2019GH000187 
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FIGURE B-11. SOUTHWEST DUST IMPACTS BY TEMPERATURE BIN DEGREE 
A. 2010 SOCIOECONOMICS 
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B. 2090 SOCIOECONOMICS 

  

 
Total impacts ($billions) by degree (°C) for each impact type for two socioeconomic snapshots (2010 and 2090 using the 
default scenarios). The extrapolated portions of the impact function are shown with a dashed line. Note the figure scale 
varies by plot. 
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Processing steps  

TABLE B-6. INCOMING DATA CHARACTERISTICS: SOUTHWEST DUST 

Data Features Southwest Dust Attributes 

Evaluated Impacts  • Mortality: premature deaths per capita (physical) 
• Value of premature mortality (economic) 
• Respiratory hospitalizations per capita (physical) 
• Respiratory hospitalization costs (economic) 
• Acute myocardial infarction hospitalizations per capita (physical) 
• Acute myocardial infarction hospitalization costs (economic) 
• Cardiovascular hospitalizations per capita (physical) 
• Cardiovascular hospitalization costs (economic) 
• Asthma emergency department visits per capita (physical) 
• Asthma emergency department visit costs (economic) 

Variants • No additional adaptation 
Data Shape • Year 

• Six GCMs (standard CIRA set) 
• State level 

Model Type • Empirical 
Runs Provided • Without socioeconomic growth and with climate change 
Additional Data • Age-stratified 2010 and 2090 ICLUSv2 population data 
Regions and States with Impacts • Southwest (excluding CA, NV) 

Processing steps are illustrated in Figure B-12. Original results for the Southwest region from Achakulwisut 
et al. (2019) are presented as annual changes in the incidence rates of health impacts relative to baseline 
levels for affected populations — for example, changes in the cardiovascular disease incidence rate for 
people over 65. These results already account for baseline incidence, so no additional processing is needed 
to isolate climate impacts for use in FrEDI. These regional results are first converted to case counts by 
multiplying the incremental incidence rates by ICLUSv227 regional affected populations specific to each 
health endpoint (in 2010 and 2090). Regional cases are then distributed to states using population-
weighted exposure to particulate matter. State incremental incidence rates are derived by dividing case 
counts by ICLUSv2 state affected populations specific to each health endpoint (in 2010 and 2090). The last 
pre-processing step is to bin the incremental incidence rates of each health endpoint by degree of CONUS 
temperature change for each GCM by averaging across the 11-year windows where each GCM reaches each 
integer degree of CONUS warming relative to the baseline. 

We use age-stratified 2010 and 2090 ICLUSv2 population data to calculate state-specific scalars 
representing the proportion of the population 30 and older and 65 and older. These scalars are included in 

 
27 Bierwagen, B., Theobald, D.M., Pyke, A., Choate, A.P., Thomas, J.V., Morefield, P., 2010. 2010: National housing and 
impervious surface scenarios for integrated climate impact assessments. Proc. Natl. Acad. Sci. 107; EPA, 2017. Updates to 
the Demographic and Spatial Allocation Models to Produce Integrated Climate and Land Use Scenarios (Iclus) (Version 2) 
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FrEDI to ensure that calculated incidence rates are applied only to the affected fraction of the population 
for each health endpoint. 

FIGURE B-12. SOUTHWEST DATA PROCESSING FRAMEWORK 

 

When FrEDI is run, the pre-processed by-degree per capita incidence functions for each health endpoint are 
then applied to the input temperature scenario to calculate the unadjusted annual per capita impacts 
based on the level of warming in each year of the input scenario. The total annual physical counts are then 
calculated by applying these annual per capita rates to the input population scenario using the endpoint-
specific population proportion scalars. Lastly, physical impacts are monetized by multiplying these impacts 
by the average medical costs. Medical costs are variable across health impacts and constant over time. 
Annual mortality counts are monetized using the VSL, calculated at runtime from input GDP per capita (Eq. 
B-1). 
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Limitations and Assumptions 

• While dust exposures are known to be large in the southwestern U.S., this analysis does not 
consider health effects from coarse and fine dust in other regions of the U.S.  

• Consistent with standard EPA practice, real health care costs are assumed constant over time in this 
analysis. There is some evidence, however, that health care costs have risen faster than the overall 
rate of inflation in the recent past – if that trend were to hold true in the future, this assumption 
would lead to an underestimation bias in the valuation component of this analysis. 

• This sector relies on population for a section of the Southwest region (Arizona, Colorado, New 
Mexico, Utah) to calculate damages across impact types. The scaling of damages by this population 
allows for custom inputs of socio-economic estimates, and FrEDI applies state-level changes in age 
structure over time based on age-stratified population projections from ICLUS. 

• For further discussion of the limitations and assumptions in the underlying sectoral model, see 
Achakulwiset et al. (2019). 

Valley Fever 

Summary 

This sectoral study estimates the health 
burden and economic value associated 
with climate change-related Valley fever 
incidence. Valley fever is a prevalent 
disease in the hot and dry Southwest 
region of the U.S. but is expected to 
expand in geographic scope with warming. 
Therefore, this analysis quantifies Valley fever impacts across the CONUS, with most of the burden in the 
Southwest. 

Impacts are based on the change in number of Valley fever cases and the probability of a range of 
morbidity outcomes. These outcomes are monetized using direct hospitalization costs, costs of emergency 
department visits, costs of physician visits, indirect cost of lost productivity from hospitalization, and the 
VSL (for premature mortality).   

For illustrative purposes, Figure B-13 shows the resulting damages by degree of warming for mortality, all 
morbidity, and lost wage end points, by GCM, calculated using 2010 (panel A) and 2090 (panel B) 
socioeconomics (i.e., the endpoints of the socioeconomic scenarios).  

UNDERLYING DATA SOURCES AND LITERATURE 

Gorris, M. E., Neumann, J. E., Kinney, P. L., Sheahan, M., & 
Sarofim, M. C. (2020). Economic Valuation of Coccidioidomycosis 
(Valley Fever) Projections in the United States in Response to 
Climate Change. Weather, Climate, and Society, 13(1), 107-123. 
Doi:10.1175/WCAS-D-20-0036.1 
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FIGURE B-13. VALLEY FEVER IMPACTS BY TEMPERATURE BIN DEGREE 
A. 2010 SOCIOECONOMICS     B.  2090 SOCIOECONOMICS 

    

 
Total impacts ($billions) by degree (°C) for each impact type for two socioeconomic snapshots (2010 and 2090 using the 
default scenarios). The extrapolated portions of the impact function are shown with a dashed line. Note the figure scale 
varies by plot. 
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Processing steps  

TABLE B-7. INCOMING DATA CHARACTERISTICS: VALLEY FEVER 

Data Features Valley Fever Attributes 

Evaluated Impacts • Mortality: premature deaths per capita (physical) and value of premature 
mortality (economic) 

• Morbidity: value of morbidity incidence (economic) 
• Productivity losses: lost wages 

Variants • No additional adaptation 
Data Shape • Annual 

• Six GCMs (standard CIRA set) 
• State level 

Model Type • Empirical 
Runs Provided • With climate change population growth, historical baseline incidence 
Additional Data • None 
Regions and States with Impacts • Midwest (excluding IL, IN, MI, MO, OH, WI) 

• Northern Plains 
• Northwest 
• Southern Plains 
• Southwest 

Processing steps are illustrated in Figure B-14. The Gorris et al. (2020) study authors provided the projected 
number of Valley fever cases at the county-level for 10-year eras centered on the years 2030, 2050, 2070, 
and 2090, for six GCMs. In the first pre-processing step, the impacts from climate change are isolated by 
subtracting the baseline incidence by county, for those Southwest counties that met an endemicity 
threshold for Valley fever in the baseline period (112 Southwest counties out of 216). A baseline of zero is 
assumed for all other counties with projected incidence.28 To ensure that changes in incidence are relative 
to the FrEDI baseline (e.g., 1986-2005), the baseline incidence used in this pre-processing step are based on 
results derived from LOCA weather data instead of the baseline used in the underlying study.29 In the next 
pre-processing step, the number of cases in each county are summed to the state level, resulting in total 

 
28 Note that climate-attributed excess cases are estimated by comparison of the modeled future climate to the model 
baseline, using the two-stage approach developed in the paper. Incidence is only calculated in counties that meet an 
endemicity threshold. Therefore, there are two ways that cases can be attributed to climate change: 1. Endemicity 
thresholds are met in both the baseline and future climate, and so excess cases are the difference between the calculated 
incidence in future minus baseline; 2. Climate change causes a county to cross the endemicity threshold, in which all future 
cases are attributed to climate change. This approach is consistent with the current understanding of Valley fever incidence, 
which is that the fungus must first be established in the soil before a case attributed to exposure in the county can be 
inferred. 
29 Baseline incidence from the Gorris et al., (2020) study is from the Precipitation-Elevation Regressions on Independent 
Slopes Model (PRISM). The PRISM baseline provides total regional incidence but does temporally align with the FrEDI 
baseline period and therefore impacts are re-based during this pre-processing stage. 



Technical Documentation for the Framework for Evaluating Damages and Impacts (FrEDI)  

                Page B-32 

counts of Valley fever cases per state. These total impacts are then divided by dynamic ICLUSv230 state 
population to calculate the cases per capita for each era, GCM, and state. Lastly, cases per capita for each 
era are interpolated to construct an annual timeseries of cases per capita, which are then binned by degree 
of CONUS temperature change for each GCM by averaging across the 11-year windows where each GCM 
reaches each integer degree of CONUS warming relative to the baseline. 

FIGURE B-14. VALLEY FEVER PROCESSING FRAMEWORK 

 

When FrEDI is run, the pre-processed by-degree per capita incidence functions for each endpoint are then 
applied to the input temperature scenario and weighted by the occurrence rates of each to calculate the 
unadjusted annual per capita impacts based on the level of warming in each year of the input scenario. For 
example, based on prior literature, morbidity outcomes are expected to occur in 96 percent of Valley fever 
cases. The annual totals for each endpoint are then calculated by applying these annual per capita rates to 
the input population scenario. Lastly, direct morbidity impacts (direct hospitalization, emergency room visit 
with discharge, emergency room visit with hospitalization, and physician visit) are monetized based on an 
incidence-weighted average morbidity outcome, with the weights applied to the cost of illness value for 
each of the four mutually exclusive outcomes. Lost productivity costs in the form of lost wages associated 

 
30 Bierwagen, B., Theobald, D.M., Pyke, A., Choate, A.P., Thomas, J.V., Morefield, P., 2010. 2010: National housing and 
impervious surface scenarios for integrated climate impact assessments. Proc. Natl. Acad. Sci. 107; EPA, 2017. Updates to 
the Demographic and Spatial Allocation Models to Produce Integrated Climate and Land Use Scenarios (Iclus) (Version 2) 
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with hospitalizations are monetized using likelihood of outcome and wage rate, scaled by user-input GDP 
per capita. Mortality is also expected to occur in four percent of Valley fever cases and these physical 
impacts are monetized using the VSL, calculated at runtime from input GDP per capita (Eq. B-1). 

Limitations and Assumptions 

• This analysis assumes a baseline of zero cases for counties that did not meet the endemicity 
threshold in the Southwest region during the baseline period and all counties with projected Valley 
fever cases outside of the Southwest region. 

• Consistent with standard EPA practice, real health care costs are assumed constant over time in this 
analysis. There is some evidence, however, that health care costs have risen faster than the overall 
rate of inflation in the recent past – if that trend were to hold true in the future, this assumption 
would lead to an underestimation bias in the valuation component of this analysis. 

• For further discussion of the limitations and assumptions in the underlying sectoral model, see 
Gorris et al. (2020). 

Wildfire 

Summary 

This sectoral study estimates health impacts 
from wildfire emissions and response costs 
from wildfire suppression. Neumann et al. 
(2021) models change in wildfire activity for 
the western region of CONUS. As such, 
response costs are limited to this area, but 
this study models health impacts of the 
particulate matter from western wildfires across the CONUS (as these emissions typically travel eastward 
across the continent). 

Health impacts are based on the change in incidence of a range of morbidity and mortality outcomes, which 
are monetized using direct hospitalization costs, costs of emergency department visits, lost productivity, 
and (for mortality) the VSL. Response costs are estimated based on average wildfire response costs per acre 
burned, by state. For illustrative purposes, Figure B-15 shows the resulting damages by degree of warming 
all mortality, response costs, and morbidity impact types by GCM, calculated using 2010 (panel A) and 2090 
(panel B) socioeconomics (i.e., the endpoints of the socioeconomic scenarios). 

  

UNDERLYING DATA SOURCES AND LITERATURE 

Neumann, J. E., Amend, M., Anenberg, S., Kinney, P. L., Sarofim, M., 
Martinich, J., Lukens, J., Xu, J., & Roman, H. (2021). Estimating 
PM2.5-related premature mortality and morbidity associated with 
future wildfire emissions in the western US. Environmental Research 
Letters, 16(3). Doi:10.1088/1748-9326/abe82b 
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FIGURE B-15. WILDFIRE IMPACTS BY TEMPERATURE BIN DEGREE 
A. 2010 SOCIOECONOMICS     B.   2090 SOCIOECONOMICS 

         

 
Total impacts ($billions) by degree (°C) for each impact type for two socioeconomic snapshots (2010 and 2090 using the 
default scenarios). The extrapolated portions of the impact function are shown with a dashed line. Note the figure scale 
varies by plot. 
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Processing steps  

TABLE B-8. INPUT DATA CHARACTERISTICS: WILDFIRE 

Data Features Wildfire Attributes 

Evaluated Impacts • Mortality: premature deaths per capita (physical) and value of premature 
mortality (economic) 

• Morbidity: value of morbidity incidence (economic) 
• Response cost: acres burned (physical) and response costs (economic) 

Variants • No additional adaptation 
Data Shape • Annual 

• Six GCMs (standard CIRA set) 
• State level 

Model Type • Empirical and Simulation 
Runs Provided • With climate change, with and without population growth 
Additional Data • None 
Regions and States with Impacts • All CONUS regions and states 

Processing steps are illustrated in Figure B-16. Data for each impact type (mortality, morbidity, and 
response costs) are each processed separately. For mortality, the Neumann et al., (2021) study authors 
provided state-level mortality incidence attributable to climate change-related changes in PM2.5 
concentrations resulting from wildfires, for two 10-year eras centered on 2050 and 2090 and five GCMs. 
This analysis considers mortality estimated using a concentration-response function based on risk model 
information specific to those age 30 and older. In the first pre-processing step, the excess health burden 
associated with climate-induced changes in wildfire activity is isolated by subtracting incidence from a 
synthetic “no wildfires” mortality scenario (using the Localized Constructed Analogs, or LOCA data) from 
the projected incidence with wildfires. This technique allows identification of air quality and health effects 
associated solely with wildfire. In the next pre-processing step, climate change-related mortality incidence 
is then divided by dynamic ICLUSv231 state-level population for each era to calculate mortality per capita 
for each era/GCM/state scenario. Finally, an annual time series of incidence per capita is constructed by 
linearly interpolating between era values, and yearly impacts are binned by degree of CONUS temperature 
change for each GCM by averaging across the 11-year windows where each GCM reaches each integer 
degree of CONUS warming relative to the baseline. 

For morbidity, the Neumann et al., (2021) study authors provided state-level morbidity incidence and 
valuation for the same 10-year eras centered on 2050 and 2090 and five GCMs. To represent this morbidity 
impact type in FrEDI, the valuation is summed across a set of health endpoints to determine one value 
associated with all morbidity impacts, representing cost of illness and lost productivity for each 

 
31 Bierwagen, B., Theobald, D.M., Pyke, A., Choate, A.P., Thomas, J.V., Morefield, P., 2010. 2010: National housing and 
impervious surface scenarios for integrated climate impact assessments. Proc. Natl. Acad. Sci. 107; EPA, 2017. Updates to 
the Demographic and Spatial Allocation Models to Produce Integrated Climate and Land Use Scenarios (Iclus) (Version 2) 
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era/GCM/state scenario.32 In the first pre-processing step, the baseline valuation is subtracted from the 
2050 and 2090 projected valuation to isolate the impact of climate change on wildfire-related morbidity. In 
the following steps, the morbidity valuation for each era is then divided by state-level population, 
interpolated to construct an annual timeseries, and temperature binned by GCM-specific 11-year windows 
to generate state-level morbidity damages per capita by degree damage functions. 

For the response costs, the Neumann et al. (2021) study authors provided data on the acres burned by 
year, GCM, and state (excluding states within the Midwest, Northeast, and Southeast regions). In the first 
pre-processing step, acres burned in the baseline is subtracted from the projected acres burned values. As 
this endpoint is not dependent on population, the next step temperature bins the acres burned per state 
across the GCM-specific 11-year windows to derive acres burned per state per degree damage functions. 
For this impact type, state-level response costs per acre from the original study are also input as an 
economic scalar in FrEDI. Response costs per acre remain constant across the century.  

 
32 The full list of health endpoints includes acute bronchitis, nonfatal acute myocardial infarction, asthma exacerbation 
(cough, wheeze, shortness of breath), asthma emergency room visits, cardiovascular hospital admissions, asthma hospital 
admissions, chronic lung disease hospital admissions (less asthma), respiratory hospital admissions, lower respiratory 
symptoms, upper respiratory symptoms, work loss days, and minor restricted activity days. 
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FIGURE B-16. WILDFIRE PROCESSING FRAMEWORK 

 
 

When FrEDI is run, the pre-processed by-degree per capita impact (morbidity and mortality) and acres 
burned functions are then applied to the input temperature scenario to calculate the unadjusted impacts 
based on the level of warming in each year of the input scenario. The total annual physical mortality counts, 
and the total value of morbidity damages are then calculated by applying these annual per capita rates to 
the input population scenario. Lastly, annual mortality counts are monetized using the VSL, calculated at 
runtime from input GDP per capita (Eq. B-1) and suppression costs are monetized by scaling the acres 
burned by the response cost per acre burned economic scalar. Morbidity impacts are already valued.  

Limitations and Assumptions 

• Mortality incidence is quantified for those age 30 and older, and this analysis assumes the impacts 
for those under 30 to be zero. Doing so underestimates the risk of premature mortality experienced 
by those under 30. Additionally, doing so assumes that age demographics remain proportional over 
the century. 
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• Similarly, the morbidity health endpoints included in this analysis are associated with various age 
distributions. Total valuation is divided by state population, assuming the health burden outside of 
included age ranges is zero. 

• Consistent with standard EPA practice, real health care costs are assumed constant over time in this 
analysis.  There is some evidence, however, that health care costs have risen faster than the overall 
rate of inflation in the recent past – if that trend were to hold true in the future, this assumption 
would lead to an underestimation bias in the valuation component of this analysis. 

• For further discussion of the limitations and assumptions in the underlying sectoral model see 
Neumann et al. (2021). 

CIL Crime 

Summary 

This sector addresses the impact of 
climate change on the incidence of 
property and violent crime across all of 
CONUS. The Climate Impact Lab (CIL) 
Crime projections are drawn from a 
temperature response function derived 
from Jacob, Lefgren, and Moretti (2007), 
refined and tuned to data from Ranson 
(2014), and applied in Hsiang et al. 
(2017) to generate projected future 
climate impacts on crime occurrence by 
GCM and RCP through the 21st century. 

While the empirical link between heat and criminal activity is well established in the literature, the 
theoretical explanation for this connection is still debated. Two principal theories are the routine activity 
theory, which suggests that heat and weather patterns affect individuals’ decisions and movement patterns 
and by extension alter the frequency of crime opportunities, and the temperature-aggression hypothesis, 
which posits that higher temperatures induce aggression and impulsiveness.33 

Data on costs of crime from Heaton (2010) and baseline incidence data from Hsiang et al., (2017) are used 
to construct state-specific costs for two categories of crime: property (robbery, burglary, larceny, and 
motor vehicle theft) and violent (murder, rape, and assault). For each category, the cost of crime is 
calculated as the incidence-weighted average of the costs of the included crimes. Cost of crime estimates 
from Heaton (2010) represent an average across three studies employing different methods of estimating 
the costs of crimes. Two of these studies use an accounting-based method wherein the individual costs of 

 
33 Corcoran, J. & Zahnow, R. (2022). Weather and crime: a systematic review of the empirical literature. Crime Science, 11, 
16. 

UNDERLYING DATA SOURCES AND LITERATURE 

Hsiang, S., Kopp, R., Jina, A., Rising, J., Delgado, M., Mohan, S., 
Rasmussen, D.J., Muir-Wood, R., Wilson, P., Oppenheimer, M., 
Larsen, K., and Houser T. (2017). Estimating economic damage from 
climate change in the United States, Science, 356, 1362–1369. 

Jacob, B., Lefgren, L., and Moretti, E. (2007). The dynamics of 
criminal behavior, J. Hum. Resour., 42, 489–527. 

Ranson, M. (2014). Crime, weather, and climate change, J. Environ. 
Econ. Manage., 67, 274–302. 

Heaton, P. (2010). Hidden in Plain Sight: What Cost-of-Crime 
Research Can Tell Us About Investing in Police, RAND Corporation. 
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various outcomes of a crime are valued separately and their costs are summed (e.g. the cost of a robbery 
consists of the costs to individuals and to society of lost property, preventative measures, medical 
treatment, pain and suffering, and the criminal justice process). The third study relies on contingent 
valuation methods to estimate society’s willingness to pay for avoided instances of each crime (Heaton 
2010). 

The currently available results account for adaptation approaches only to the extent that they have been 
previously implemented within the studied populations. We anticipate that future revisions of FrEDI may 
incorporate a “with adaptation” variant that includes modelling of projected future adaptations. For 
illustrative purposes, Figure B-17 shows the resulting damages by degree of warming violent and property 
crime, by GCM. 

FIGURE B-17. CIL CRIME IMPACTS BY TEMPERATURE BIN DEGREE 

 

 
Total impacts ($billions) by degree (°C) for each impact type, which do not vary by socioeconomic scenario or time. The 
extrapolated portions of the impact function are shown with a dashed line. Note the figure scale varies by plot. 

Processing steps 

TABLE B-9. INCOMING DATA CHARACTERISTICS: CIL CRIME 

Data Features CIL Crime Attributes 

Evaluated Impacts  • Crime: number of crimes, violent and property (physical) 
• Damage from crimes, violent and property (economic) 

Variants • No additional adaptation, median estimates 
Data Shape • Year 

• Six GCMs (standard CIRA set) 

• Three variants 
• State level 
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Data Features CIL Crime Attributes 

Model Type • Empirical 
Runs Provided • Without socioeconomic growth and with climate change 
Additional Data • Baseline crime incidence by state 

• Cost of crime by type 
Regions and States with Impacts • All CONUS regions and states 

Processing steps are shown in Figure B-18. The Hsiang et al. (2017) study authors provided data on the 
percent change in crime under RCP 8.5 by GCM, year, state, and crime type, along with baseline incidence 
by state for each category of crime averaged over the 2000-2005 period. While the authors provided a full 
distribution of impact results, FrEDI currently only accounts for the median estimate. In the first pre-
processing step, the percent changes and baseline data by state are multiplied to calculate annual changes 
in the number of crimes. In the second pre-processing step, the state-level annual incremental changes in 
crime are binned by degree of CONUS temperature change for each GCM by averaging across the 11-year 
windows where each GCM reaches each integer degree of CONUS warming relative to the baseline. State-
specific, incidence-weighted cost of crime estimates are derived using cost of crime data from Heaton 
(2010) and the provided baseline incidence data from Hsiang et al., (2017) and input as an economic scalar 
in FrEDI. These cost of crime estimates are held constant for all projected years as the available 
documentation does not provide information on how or whether crime costs would scale with population, 
GDP, GDP per capita, or other socioeconomic driver data. 
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FIGURE B-18. CIL CRIME DATA PROCESSING FRAMEWORK 

 

When FrEDI is run, the pre-processed by-degree crime functions are then applied to the input temperature 
scenario to calculate the unadjusted annual number of crimes based on the level of warming in each year 
of the input scenario. Lastly, the annual damages from both types of crime are monetized by multiplying 
these incremental changes in incidence by the state-specific, incidence-weighted cost of crime economic 
scalar estimates. 

Limitations and Assumptions 

• These projections of crime incidence do not account for future changes in population or other 
socioeconomic drivers. Because the incidence is not scaled with socioeconomic growth, it is likely 
that we underestimate future impacts. For reference, the standard CIRA data inputs imply that 
population would grow by approximately 50%, and GDP would grow by about a factor of 5 over the 
21st century. 

• These projections use static values for the state-specific weighted costs of property and violent 
crime. It is possible that at least some components of the costs of property and violent crime could 
grow over time – for example a VSL for victims of murder, or the value of property damaged or 
stolen – but because the incidence is aggregated, we are currently unable to assess the possible 
growth in these costs per incidence over time. 
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• For further discussion of the limitations and assumptions in the underlying sectoral model, please 
see Hsiang et al. (2017). 

Vibriosis 

Summary 

This sectoral study estimates the health 
burden and the associated economic 
value in the CONUS resulting from 
changes in vibriosis cases due to climate 
change. Vibriosis is an illness contracted 
through food (typically raw seafood) 
and waterborne exposures to various 
Vibrio species. Vibrio is a bacterium that is prevalent in marine environments. Warmer water temperatures 
increase the abundance of Vibrio species in saltwater environments, and warmer air temperatures can 
increase the likelihood that efforts to keep harvested seafood cool up to the point of consumption may fail, 
leading to a higher risk of Vibrio infection. 

The underlying study (Sheahan et al. 2022) uses CDC data on historical Vibrio infections and the severity of 
the resulting health effects, traces the infections to likely locations of exposure, and estimates the influence 
of environmental factors such as sea surface temperature on infection rates. The model of infection rates is 
then used to develop estimates of projected cases of vibriosis for future climate change scenarios. While 
the route of exposure is limited to marine coastal environments, the transport of seafood across the 
country means that infections can occur almost anywhere. State results reported in FrEDI are based on 
coastal exposure locations, not locations where seafood might be consumed. Damages are based on 
estimates of monetized direct medical costs, lost workdays, and changes in mortality outcomes. Lost 
workdays are monetized through estimated daily wage rate, and mortality outcomes through VSL.  

For illustrative purposes, Figure B-19 shows the resulting damages by degree of warming for the mortality, 
direct medical cost, and lost days impact types, by GCM, calculated using 2010 (panel A) and 2090 (panel B) 
socioeconomics (i.e., the endpoints of the socioeconomic scenarios). 

 

UNDERLYING DATA SOURCES AND LITERATURE 

Sheahan, M., Gould, C.A., Neumann, J.E., Kinney, P.L., Hoffmann, S., 
Fant, C., Wang, X. and Kolian, M. (2022). Examining the Relationship 
between Climate Change and Vibriosis in the United States: Projected 
Health and Economic Impacts for the 21st Century. Environmental 
Health Perspectives, 130(8). doi:https://doi.org/10.1289/ehp9999a. 
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FIGURE B-19. VIBRIOSIS IMPACTS BY TEMPERATURE BIN DEGREE 
A. 2010 SOCIOECONOMICS    B.   2090 SOCIOECONOMICS 

  

 
Total impacts ($billions) by degree (°C) for each impact type for two socioeconomic snapshots (2010 and 2090 using the 
default scenarios). The extrapolated portions of the impact function are shown with a dashed line. Note the figure scale 
varies by plot. 
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Processing steps 

TABLE B-10. INCOMING DATA CHARACTERISTICS: VIBRIOSIS 

Data Features Vibriosis Attributes 

Evaluated Impacts • Mortality: premature deaths per capita (physical) and value of 
premature mortality (economic) 

• Morbidity: direct medical costs (economic) 
• Productivity losses: lost wages 

Variants • No additional adaptation 
Data Shape • Annual 

• Six GCMs (standard CIRA set) 
• State level 

Model Type • Empirical 
Runs Provided • With climate change population growth, historical baseline 

incidence 
Additional Data • None 
Regions and States with Impacts • Northeast (excluding VT, WV) 

• Northwest (excluding ID) 
• Southeast (excluding AR, KY, TN) 
• Southern Plains (excluding KS, OK) 
• Southwest (excluding AZ, CO, NV, NM, UT) 

Processing steps are illustrated in Figure B-20. Original data provided by the Sheahan et al., (2023) study 
authors include the increases in health impacts (direct medical costs, lost days, or mortality counts) for 
affected populations at the county level from 2006 to 2099. To isolate the climate impacts in the first pre-
processing step, baseline values (provided by study authors) are subtracted from these yearly values and 
summed to the state level. In the next pre-processing steps, state-level impacts are binned by degree of 
CONUS temperature change for each GCM.   
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FIGURE B-20. VIBRIOSIS DATA PROCESSING FRAMEWORK 

  

When FrEDI is run, the pre-processed by-degree impact functions are then applied to the input 
temperature scenario to calculate the unadjusted annual impacts based on the level of warming in each 
year of the input scenario. Note that population is not used in this calculation (see Limitations and 
Assumptions below). Lastly, annual mortality counts are monetized using the VSL, calculated at runtime 
from input GDP per capita (Eq. B-1) and lost days, which represent lost days of labor, are monetized using 
the daily wage rate scaled by user-input GDP per capita. Direct Medical Costs are already in dollar values 
and therefore only scale by the user-input temperature scenario. 

Limitations and Assumptions 

• The original study does not consider population growth in future case projections because the 
factors that drive vibriosis do not necessarily scale with population. Therefore, this processing does 
not provide per capita results to allow for population scaling. 

• While the original study investigated the impact of changes in sea surface temperatures (related to 
GCMs) and vibriosis, this tool assumes changes in atmospheric temperature serve as a proxy for 
changes in baseline sea surface temperatures. 
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• Consistent with standard EPA practice, real health care costs are assumed constant over time in this 
analysis. There is some evidence, however, that health care costs have risen faster than the overall 
rate of inflation in the recent past – if that trend were to hold true in the future, this assumption 
would lead to an underestimation bias in the valuation component of this analysis. 

• For further discussion of the limitations and assumptions in the underlying sectoral model, see 
Sheahan et al. (2022). 

Suicide 

Summary 

This sector addresses the impact of climate-
driven changes in temperature and weather 
on suicide incidence for the population age 
5 and older across CONUS using projections 
based on Belova et al. (2022). 

The causative factors driving the association 
between temperature and suicide are not 
well understood, but evidence from other 
countries suggest that suicide by violent 
means is connected to elevated temperature over a relatively longer period of time than a single heat wave 
(on the order of a month or more), and hypothesized factors include sociological (e.g., increased alcohol 
use during heat waves), biological (e.g., effects on neurotransmitters such as serotonin which affect 
impulsivity and aggression), and psychological (e.g., temperature links to disinhibition and increased 
propensity for aggression and violence) components.34 

Belova at al. (2022) assessed these effects using four different health impact function specifications 
developed primarily using results from Mullins & White (2019). Per the authors’ recommendation, we use 
results from Belova et al. (2022) averaged across the four health impact function specifications. Changes in 
mortality are monetized by applying the GDP per capita adjusted VSL. Additional mental health effects from 
climate change have been suggested in the literature, but the scope of the quantitative results in this sector 
is limited to mortality from suicide. For illustrative purposes, Figure B-20 shows the resulting damages by 
degree of warming by GCM, calculated using 2010 (panel A) and 2090 (panel B) socioeconomics (i.e., the 
endpoints of the socioeconomic scenarios). 

 
34 See Page, L. A., Hajat, S., & Kovats, R. S. (2007). Relationship between daily suicide counts and temperature in England 
and Wales. The British Journal of Psychiatry, 191(2), 106-112.. https://doi.org/10.1192/bjp.bp.106.031948. 

UNDERLYING DATA SOURCES AND LITERATURE 

Belova, A., Gould, C.A., Munson, K., Howell, M., Trevisan, C., 
Obradovich, N., and Martinich, J. (2022). Projecting the Suicide 
Burden of Climate Change in the United States. GeoHealth 6, no. 5. 
https://doi.org/10.1029/2021GH000580. 

Mullins, J. T., & White, C. (2019). Temperature and mental health: 
Evidence from the spectrum of mental health outcomes. Journal of 
Health Economics 68, 102240.  
https://doi.org/10.1016/j.jhealeco.2019.102240. 

 

https://doi.org/10.1192/bjp.bp.106.031948
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FIGURE B-20. SUICIDE IMPACTS BY TEMPERATURE BIN DEGREE 

A. 2010 SOCIOECONOMICS     B. 2090 SOCIOECONOMICS 

  

 
Total impacts ($billions) by degree (°C) for two socioeconomic snapshots (2010 and 2090 using the default scenarios). The 
extrapolated portions of the impact function are shown with a dashed line. Note the figure scale varies by plot. 

Processing steps 

TABLE B-11. INCOMING DATA CHARACTERISTICS: SUICIDE 

Data Features Suicide Attributes 

Evaluated Impacts • Mortality: premature deaths per capita (physical) 
• Value of premature mortality (economic) 

Variants • No additional adaptation 
Data Shape • Integer degree (1-6) 

• Six GCMs (standard CIRA set) 
• County level 
• Age binned (5-24, 25-64, 65+) 

Model Type • Empirical 
Runs Provided • With climate change, with and without population growth 
Additional Data • Population by age bin and county 
Regions and States with Impacts • All CONUS regions and states 

Processing steps are shown in Figure B-21. The data provided by the Belova et al. (2022) study authors 
include baseline rates, populations, and the number of additional cases under RCP8.5 by GCM, county, age 
bin, and degree of warming for scenarios with and without population growth. We use the static population 
scenario for rate calculations and then apply scaling factors to account for demographic changes as 
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described below. While the authors also provided a distribution of impact results which reflects parametric 
uncertainty in health impact function coefficients and VSL, FrEDI currently uses point estimates rather than 
the results of the Monte Carlo simulation.  

In the first pre-processing step, populations and incremental additional case counts are aggregated to the 
state level by summing across age bins and counties. The case count is then divided by the impacted 
population (i.e., ages 5 and older) for each state to arrive at degree-binned future marginal incidence rates. 
Because these rates are only based on a subset of the total population (e.g., do not include all ages), a set 
of scalars is calculated during pre-processing to later adjust the user-input population when FrEDI is run. 
These scalars are calculated as the ratio of the 5+ population to the total population using the ICLUSv235 
projections, which is the basis of FrEDI’s default population scenario and the Belova et al. (2022) analysis. 

An additional set of scalars also is calculated to account for dynamic demographic changes. The mortality 
projections from Belova et al. (2022) represent composite rates aggregated across age bins, and the 
underlying analysis includes implicit assumptions about how the relative weights of these age bins (and 
their corresponding incidence rates) change over time. For both the static and dynamic population 
scenarios provided by the authors, we calculate total incidence at the county level by multiplying the 
baseline rate by the population, adding the climate-attributable additional cases, and summing across age 
bins. We then sum case counts and populations to the state level and divide the total case count by 
population for each state to arrive at degree-binned future total incidence rates. Finally, we take the ratio 
of the dynamic population scenario rate to the static population scenario rate. Population is the only driver 
that varies between these two scenarios, so the ratio of the two represents the effect of demographic 
change on projected incidence rates. Both sets of scalars are calculated at the state level in all years for 
which we received data from the authors (the integer degree arrival years for the six included GCMs) and 
are used during FrEDI runtime to adjust calculated impacts. 

 
35 Bierwagen, B., Theobald, D.M., Pyke, A., Choate, A.P., Thomas, J.V., Morefield, P., 2010. 2010: National housing and 
impervious surface scenarios for integrated climate impact assessments. Proc. Natl. Acad. Sci. 107; EPA, 2017. Updates to 
the Demographic and Spatial Allocation Models to Produce Integrated Climate and Land Use Scenarios (Iclus) (Version 2) 
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FIGURE B-21. SUICIDE DATA PROCESSING FRAMEWORK 

 

When FrEDI is run, the pre-processed by-degree per capita mortality functions are then applied to the input 
temperature scenario to calculate the unadjusted annual per capita impacts based on the level of warming 
in each year of the input scenario. The total annual physical mortality counts are then calculated by 
applying these annual per capita rates to the input population scenario, which are then scaled to account 
for changes in population demographics and to only include impacts to those age 5 and older. Lastly, 
annual mortality counts are monetized using the VSL, calculated at runtime from input GDP per capita (Eq. 
B-1). 

Limitations and Assumptions 

• There is potential for overlap in premature mortality of any type attributable to extreme heat 
(addressed in the Extreme Temperature, CIL Temperature-Related Mortality, and ATS Temperature-
Related Mortality sectors) and suicide mortality attributed to high heat days in this sector. For the 
heat event-based Extreme Temperature sector, the effect is likely to be small because the “high 
heat day” metrics differ substantially across the two sectors, with a different definition of the heat 
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stressor including much lower effective threshold for high heat in the Belova et al. (2022) study 
used here (80oF). For the other two temperature/mortality options, the potential for overlap is 
greater – this is described in more detail in Section 2.2 of the main report, under the header 
Aggregation of Sectoral Impacts. For this reason, the applications of FrEDI in this report take a 
conservative approach and incorporate a downward adjustment to the ATS Temperature-Related 
Mortality equal to the total mortality impact estimated for the Suicide sector, to avoid double-
counting of mortality estimates. 

• Based on communication with the authors of Belova et al. (2022), we use an average across the four 
impact function specifications here. Using an individual specification or a different subset of the 
four could alter estimates. 

• These projections account for potential adaptation strategies only to the extent that they were 
implemented during the observation period of Belova et al. The potential for future adaptation 
efforts (e.g., expanded access to air conditioning, urban greening) and societal trends (e.g., 
increased recognition of mental health diagnoses and expanded access to mental health treatment) 
to reduce these impacts is not considered here.  
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B.3 Infrastructure Sectors  

Coastal Properties 

Summary 

This sector study estimates future 
property value damages from 
combined sea level rise and storm 
surge in the CONUS, attributed to 
climate change.  

Damages are estimated for all real 
properties (land and structure) in all 
coastal counties that contain land 
with a hydraulic connection to the 
ocean and containing property that 
is within 20 m elevation above sea level for the year 2000. Property values for potentially vulnerable 
structures and land are “market adjusted” assessed values that reflect 2017 property values for 302 
counties along the CONUS coast – see Neumann et al. (2021) for details. Within the model, real property 
values appreciate over the century by GDP per capita projections. 

The underlying damage simulation model includes cost estimates for no additional adaptation and two 
adaptation scenarios (reactive and proactive), as defined in the underlying study. Under the no additional 
adaptation scenario, properties are abandoned once inundated. Reactive adaptation loosely reflects 
structural adaptation options that can be adopted without collective action (e.g., elevation of structures 
and land near structures), while proactive adaptation includes consideration of options that likely require 
collective action (such as beach nourishment and construction of seawalls).36 The model conducts a series 
of benefit-cost calculations at the level of a 150m x 150m grid cell to assess where and when adaptation 
could be cost-effective in mitigating property damage due to sea level rise and storm surge.  

For illustrative purposes, Figure B-22 shows the resulting damages overtime, by SLR scenario, for the three 
adaptation option variants included in FrEDI.  

 
36 The underlying study (Neumann et al. 2021) outlines the logic for classifying measures as reactive or proactive. The 
general concept is that reactive measures are either responsive to events (without foresight about future events) or can be 
undertaken without coordinated action between individuals and governments. Elevation, for example, is modeled at the 
individual property level in response to highly localized hazards, not as a collective action of municipal governments to 
modify building codes.  

UNDERLYING DATA SOURCES AND LITERATURE 

Neumann, J. E., Chinowsky, P., Helman, J., Black, M., Fant, C., Strzepek, 
K., & Martinich, J. (2021).  Climate effects on US infrastructure: the 
economics of adaptation for rail, roads, and coastal development. 
Climatic Change. https://doi.org/10.1007/s10584-021-03179-w 

Lorie, M., Neumann, J. E., Sarofim, M. C., Jones, R., Horton, R. M., 
Kopp, R. E., Fant, C., Wobus, C., Martinich, J., O’Grady, M., Gentile, L. 
E. (2020). Modeling coastal flood risk and adaptation response under 
future climate conditions. Climate Risk Management, 29. 
Doi:10.1016/j.crm.2020.100233 
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FIGURE B-22. COASTAL PROPERTIES IMPACTS BY SLR SCENARIO OVER TIME 

 
Total impacts ($billions) by year and variant. Note the figure scale varies by plot. 

Processing steps 

TABLE B-12. INCOMING DATA CHARACTERISTICS:  COASTAL PROPERTIES 

Data Features  Coastal Properties Attributes 
Evaluated Impacts • Costs of coastal property damage (economic) 
Variants • Direct adaptation 

• Reasonably anticipated adaptation 
• No additional adaptation 

Data Shape • Annual 
• Three adaptation scenarios 
• Six sea level rise scenarios 
• County level 

Model Type • Simulation 
Runs Provided • With climate change, with socioeconomic growth 
Additional Data • None 
Regions and States with Impacts • Northeast (excluding VT, WV) 

• Northwest (excluding ID) 
• Southeast (excluding AR, KY, TN) 
• Southern Plains (excluding KS, OK) 
• Southwest (excluding AZ, CO, NV, NM, UT) 

Processing steps are shown in Figure B-23. The study authors provided annual trajectories of property 
damages for each sea level rise scenario, year, county, and adaptation scenario. Residential and commercial 
properties and energy infrastructure are considered when calculating projected damages in the underlying 
model. For this sector in FrEDI, the baseline is anchored at the year 2000, as the National Coastal Property 
Model (NCPM) starts with zero damages in this year. In the first processing step, county-level damages are 
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summed to state level. Annual damages are then calculated using the 11-year rolling average damages for 
each sea level rise scenario.37 

As with the temperature bin indexing, GMSL is mapped to state and local sea levels based on the localized 
sea level rise projections from Sweet et al. (2017), which include effects such as land uplift or subsidence, 
oceanographic effects, and responses of the geoid and the lithosphere to shrinking land ice.38 When 
custom sea level rise scenarios are used as input in FrEDI, the relationship between GMSL and state sea 
levels, and ultimately state impacts, are mapped implicitly based on the underlying models. As noted in the 
main report text, SLR is estimated separately from a reduced complexity model that incorporates the time- 
and trajectory-dependent qualities of SLR response to temperature. That implies that damages should be 
estimated along the trajectory using both the sea level height and the year that the sea-level height is 
reached (and therefore, that year’s implicit socioeconomics).  

 
37 This calculation utilizes an 11-year window when five years of data are available on either side of the central year. At the 
beginning and end of the time series, the window tightens to preserve balance around the central year while still capturing 
results through 2100. The 11-year averaging technique is similar to the approach described in Appendix C for temperature 
binning, however since this sector is driven by SLR rather than temperature, the rolling averages are captured for every 
year. See Section 2.3 of the Main Documentation for further discussion on damage function development for SLR-driven 
impacts. 
38 Sweet, W., Kopp, R. E., Weaver, C. P., Obeysekera, J., Horton, R. M., Thieler, E. R., & Zervas, C. (2017). Global and Regional 
Sea Level Rise Scenarios for the United States (NOAA Technical Report NOS CO-OPS 083). NOAA/NOS Center for 
Operational Oceanographic Products and Services. 
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FIGURE B-23. COASTAL PROPERTIES DATA PROCESSING FRAMEWORK 

 

When FrEDI is run, the damage trajectory is interpolated between the damage curves of the sea level rise 
scenarios that have the sea level rise heights just above and below the input scenario in each year. For 
example, if the SLR trajectory reaches 175cm in 2080, the damage estimate would fall between the 150cm 
and 200cm scenarios for that year.   

Limitations and Assumptions 

• Damages are limited to land and structures within the study domain (i.e., flooding impacts to 
structures inland of 20m elevation are not quantified), and exclude the value of public 
infrastructure, which was not considered in the underlying sectoral study. 

• Adaptation response decisions in the coastal zone are not typically made with strict cost-benefit 
decision rules, particularly at the local level. Other factors may include local zoning bylaws, future 
land use plans, the presence of development-supporting infrastructure, or proximity to sites with 
high cultural value. However, the analytical framework of this coastal property model provides a 
simple, benefit-cost decision framework that can be consistently applied for state and national-
scale analysis. 
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• The underlying study does not consider the effects of climate on storm surge activity (although 
impacts on wind damage are considered in a separate sector study included in the tool). The only 
non-climate change driven change to coastline considered was an increase in land and existing 
structure value over time. 

• For further discussion of the limitations and assumptions in the underlying sectoral model see 
Neumann et al. (2021), Lorie et al. (2020), and U.S.EPA’s 2017 Multi-Model Framework for 
Quantitative Sectoral Impacts Analysis. 

Transportation Impacts from High Tide Flooding  

Summary 

This sector study estimates the cost of delays 
to passenger and freight traffic on coastal 
roads in the CONUS that experience flooding 
due to combinations of high tides and sea 
level rise, as well as costs of adaptation in 
the form of infrastructure improvements.  

Delay damages are in terms of passenger and freight vehicle-hours. These are monetized based on the 
value of travel time savings (VTTS) for passenger traffic, and the National Cooperative Highway Research 
Program’s (NCHRP) inputs for cost of delay for freight traffic. Infrastructure improvements include building 
sea walls or elevating the elevation of the roadway surface. Infrastructure improvement costs include 
estimates of material, labor, and construction delays.  

This sector in FrEDI considers three adaptation scenarios: no additional adaptation, reasonably anticipated 
adaptation, and direct adaptation. These adaptation scenarios differ from scenarios modeled for other 
infrastructure sectors. The no additional adaptation, reactive adaptation, and proactive adaptation 
scenarios of other infrastructure sectors are based on infrastructure development for an unchanging, 
current, or future climate in a given model time step. For this sector, the no additional adaptation scenario 
estimates costs of delays associated with flooding of roadways with the assumption that drivers do not re-
route and instead wait until the roadway is clear to travel. The reasonably anticipated adaptation scenario 
assumes drivers re-route to avoid flooded roadways, with only slight delay due to increased travel time. 
This scenario also includes ancillary protection; in cases where flooded roadways are near properties that 
would be protected by sea walls or beach nourishment, this scenario assumes those roadways would also 
be protected and thus no longer flood.39 In the direct adaptation scenario, where delay costs are high 

 
39 Note that the including of ancillary protection of properties with sea walls in the “reasonably anticipated” category, 
consistent with the underlying Fant et al. (2021) study, may seem inconsistent with the classification of sea walls as 
“proactive” adaptation in the coastal properties sector. As outlined in the Fant et al. (2021) high-tide flooding paper, 
however, the impact of this potential inconsistency is slight - Figure 3 and accompanying text in that paper note that 
alternative routing reduces the no adaptation impacts by 77%, while the marginal additional impact of ancillary sea wall 
protection increases the total to an 80% reduction. 

UNDERLYING DATA SOURCES AND LITERATURE 

Fant, C., Jacobs, J. M., Chinowsky, P., Sweet, W., Weiss, N., 
Martinich, J. & Neumann, J. E. (2021). Mere nuisance or growing 
threat? The physical and economic impact of high tide flooding 
on US road networks. Journal of Infrastructure Systems. doi: 
10.1061/(ASCE)IS.1943-555X.0000652 
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enough, roadways are either protected from flooding through construction of a sea wall or elevation of the 
road profile. For illustrative purposes, Figure B-24 shows the resulting damages overtime by SLR scenario 
for the three adaptation variants available in FrEDI.  

FIGURE B-24. TRANSPORTATION IMPACTS FROM HIGH TIDE FLOODING BY TEMPERATURE BIN DEGREE 

 
Total impacts ($trillions) by year and variant. Note the figure scale varies by plot. 

Processing steps 

TABLE B-13. INCOMING DATA CHARACTERISTICS: TRANSPORTATION IMPACTS FROM HIGH TIDE 
FLOODING 

Data Features Transportation Impacts from High Tide Flooding Attributes 
Evaluated Impacts • Costs of delays and infrastructure improvements (economic) 
Variants • Direct adaptation 

• Reasonably anticipated adaptation 
• No additional adaptation 

Data Shape • Annual 
• Three adaptation scenarios 
• Six sea level rise scenarios 
• County level 

Model Type • Simulation 
Runs Provided • With climate change, with socioeconomic growth 
Additional Data • None 
Regions and States with Impacts • Northeast (excluding VT, WV) 

• Northwest (excluding ID) 
• Southeast (excluding AR, KY, TN) 
• Southern Plains (excluding KS, OK) 
• Southwest (excluding AZ, CO, NV, NM, UT) 
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Processing steps are shown in Figure B-25. Total traffic delay and adaptation costs at the county level are 
provided by the Fant et al. (2021) study authors. In pre-processing step one, these total costs are 
aggregated to the state level. These damages are available for all SLR scenarios, year, and adaptation 
scenario combinations. Annual damages are then calculated using the 11-year rolling average damages for 
each sea level rise scenario.40 Similar to the Coastal Properties sector, this sector “zeroes out” in 2000, and 
thus has no baseline for which to adjust. This sector also relies on an interpolated damage estimation 
technique between results calculated in pre-processing for six SLR scenarios, as described in Section 2.3 of 
the Main Documentation. 

FIGURE B-25. TRANSPORTATION IMPACTS FROM HIGH TIDE FLOODING DATA PROCESSING FRAMEWORK 

 

When FrEDI is run, the damage trajectory is interpolated between the damage curves of the sea level rise 
scenarios that have the sea level rise heights just above and below the input scenario in each year. For 

 
40 This calculation utilizes an 11-year window when five years of data are available on either side of the central year. At the 
beginning and end of the time series, the window tightens to preserve balance around the central year while still capturing 
results through 2100. The 11-year averaging technique is similar to the approach described in Appendix C for temperature 
binning, however since this sector is driven by SLR rather than temperature, the rolling averages are captured for every 
year. See Section 2.3 of the Main Documentation for further discussion on damage function development for SLR-driven 
impacts. 
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example, if the SLR trajectory reaches 175cm in 2080, the damage estimate would fall between the 150cm 
and 200cm scenarios for that year. 

Limitations and Assumptions 

• The underlying sectoral analysis is limited to road segments within the flood extent for the current 
minor flood level. This extent is expected to migrate further inland as sea levels rise. This analysis 
also omits consideration of impacts to underground roads. 

• Flooding from rainfall or riverine flooding is not modeled and may exacerbate flood events or 
durations in the coastal zone if they occur simultaneously. 

• Many direct adaptation options (e.g., hydrologic infrastructure) are not considered. 
• The economic cost per hour of delay per passenger or freight vehicle is assumed to be constant 

over the century.  
• For further discussion of the limitations and assumptions in the underlying sectoral model see Fant 

et al. (2021).    

Rail 

Summary 

This analysis estimates repair, equipment, and 
delay costs to rail infrastructure due to rail 
track buckling or the risk of buckling in the 
CONUS associated with elevated temperatures. 
Damages are based on costs of repair, including 
equipment and labor, and delay costs. These 
costs are then scaled using total track miles in 
each state of CONUS. 

The analysis is completed for each of three 
adaptation scenarios: no additional adaptation, 
proactive adaptation, and reactive adaptation. The no additional adaptation scenario incorporates no 
speed restrictions but results in a higher risk of track buckling associated with continued use of trains 
during high temperature events. Track buckling events require repairs that create delays. The reactive 
scenario considers reduced train speeds at higher temperatures to reduce likelihood of track buckling. The 
proactive scenario includes installation of temperature sensors to monitor probabilities of track buckling 
and modify train speeds as necessary (and therefore prevent delays associated with their unexpected need 
for repair).  

For illustrative purposes, Figure B-26 shows the resulting damages by degree of warming for the three 
adaptation scenarios, by GCM, calculated using 2010 (panel A) and 2090 (panel B) socioeconomics (i.e., the 
endpoints of the socioeconomic scenarios).  

UNDERLYING DATA SOURCES AND LITERATURE 

Neumann, J. E., Chinowsky, P., Helman, J., Black, M., Fant, 
C., Strzepek, K., & Martinich, J. (2021).  Climate effects on US 
infrastructure: the economics of adaptation for rail, roads, 
and coastal development. Climatic Change. 
https://doi.org/10.1007/s10584-021-03179-w 

Chinowsky, P., Helman, J., Gulati, S., Neumann, J., & 
Martinich, J. (2019). Impacts of climate change on operation 
of the US rail network. Transport Policy, 75, 183-191. 
Doi:10.1016/j.tranpol.2017.05.007   
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FIGURE B-26. RAIL IMPACTS BY TEMPERATURE BIN DEGREE 

A. 2010 SOCIOECONOMICS 

 
 

B. 2090 SOCIOECONOMICS 

 

 
Total impacts ($billions) by degree (°C) for each variant for two socioeconomic snapshots (2010 and 2090 using the default 
scenarios). The extrapolated portions of the impact function are shown with a dashed line. Note the figure scale varies by 
plot. 

Processing steps 

TABLE B-14. INCOMING DATA CHARACTERISTICS: RAIL 

Data Features Rail Attributes 

Evaluated Impacts  • Rail Damage and Delay (economic) 
Variants • No Additional Adaptation 

• Reactive Adaptation 
• Proactive Adaptation 

Data Shape • Yearly projections 2006-2099 

• Six GCMs (standard CIRA set) 
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Data Features Rail Attributes 

• ½ degree grid level 
Model Type • Simulation 
Runs Provided • With socioeconomic growth and with climate change 

• With socioeconomic growth and without climate change (baseline runs; 
one baseline per adaptation scenario) 

Additional Data • Regional rail inventory 
• 2018 vintage ½ degree grid inventory 

Regions and States with Impacts • All CONUS regions and states 

Processing steps are shown in Figure B-27. The provided data from Neumann et al., (2021) reports damages 
at the Climatic Research Unit (CRU) ½ degree grid cell level. In the first pre-processing step, baseline costs 
from a reference scenario (i.e., costs under a no climate change scenario that include socioeconomic 
growth over the century) are subtracted for all adaptation scenarios to isolate the damages just due to 
climate change. There are unique baselines for each of the three adaptation scenarios. Across the three 
baselines, each 20-year period generally displays repeating patterns of year-to-year variation at different 
magnitudes. Thus, we take the mean of each 20-year period and subtract from its respective years’ 
damages to sustain general trends in the baseline without being subjected to large variance year-to-year. In 
the second pre-processing step, net damages and track miles are then aggregated to the state level. 
Damages and track miles within grids that cross state lines are distributed relative to the percentage of grid 
area within each state. This impact model assumes that the spatial extent and distribution of rail 
infrastructure remains constant across the 21st century. In the next pre-processing steps, net damages are 
divided by total miles of rail within a state to produce damages per mile. Rail miles per state are developed 
by using a 2015 vintage ½ degree grid cell inventory41 to determine state share of regional inventory and 
applying these weights to the regional inventory within FrEDI. Lastly, resulting annual net damages per mile 
are binned by degree of CONUS temperature change for each GCM by averaging across the 11-year 
windows where each GCM reaches each integer degree of CONUS warming relative to the baseline.  

 
41 Bureau of Transportation Statistics (2015) National Transportation Atlas Databases – NTAD 2015. 
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FIGURE B-27. RAIL DATA PROCESSING FRAMEWORK 

 

When FrEDI is run, the pre-processed by-degree impacts per mile functions are then applied to the input 
temperature scenario to calculate the unadjusted annual per mile impacts based on the level of warming in 
each year of the input scenario. Total damages are then calculated by applying these annual impacts per 
mile by the number of miles in a state, as well as a national socioeconomic growth scalar (with a 2010 base 
year). The scalar is calculated based on a ratio of a with and without growth scenario. Freight traffic 
represents 96 percent of rail traffic, and passenger traffic the remaining four percent. 

Limitations and Assumptions 

• The model assumes the number of rail miles is fixed and does not grow over time, though rail traffic 
over the existing rail network grows with a weighted average of population growth (for the 
passenger rail component) and economic growth (for the much larger freight rail component). 

• Equipment, labor, and repair supply costs are assumed to remain constant.  
• For further discussion of the limitations and assumptions in the underlying sectoral model see 

Neumann et al. (2021), Chinowsky et al. (2017), and U.S.EPA’s 2017 Multi-Model Framework for 
Quantitative Sectoral Impacts Analysis. 
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Roads 

Summary 

This sector estimates the cost of road 
repair, user costs (vehicle damage), and 
road delays due to changes in road 
surface quality in the CONUS due to 
climate change (specifically changes in 
temperature, precipitation, and 
flooding).  

Damages are based on the cost of 
repairs and delays associated with either deteriorated road surfaces or road shutdowns to complete 
repairs, and delays are scaled by current period traffic, which in turn is adjusted for future changes in 
population (described further below). The per mile impacts are then multiplied by total state road miles 
and adjusted to reflect the likelihood of delay mitigation as proxied by an index of road density in each ¼ 
degree by ¼ degree grid cell, to produce a total damage estimate in a state.  

Similar to the rail and coastal properties studies, the analysis models three adaptation scenarios: no 
additional adaptation, proactive adaptation, and reactive adaptation. In the no additional adaptation 
scenario, repairs to roads are limited to historic repair budgets; damages in this scenario are based on the 
cost of repairs to road surfaces, damage to vehicles associated with incompletely maintained roads, and 
delays associated with repairs to road surfaces or speed limitations attributed to poorly maintained 
roads.42 Under the reactive adaptation scenario, repair budgets are increased to repair all damages in a 
given year to re-establish the pre-damage level of service. In the proactive scenario, roads are pre-
emptively strengthened to prevent damage with consideration of future climate changes in the design and 
materials used for repair. Under the reactive and proactive adaptation scenarios, damages are based on the 
cost of repairs to road surfaces and the delays associated with repairs or speed limitations due to poorly 
maintained roads. The model considers three types of environmental stressors: temperature, precipitation, 
and flooding. Damages differ by road surface; road surfaces are either unpaved, paved, or gravel. This 
impact model runs at the quarter-degree grid cell level, and each grid cell is assigned adaptation-scenario 
specific budget for repairs.  

For illustrative purposes, Figure B-28 shows the resulting damages by degree for the three adaptation 
scenarios, by GCM, calculated using 2010 (panel A) and 2090 (panel B) socioeconomics (i.e., the endpoints 
of the socioeconomic scenarios). Note that the proactive adaptation results generally reflect a much lower 
damage estimate overall than no adaptation or reactive costs, but that in some scenarios the timing of 
those costs may be accelerated (and actually be triggered by relatively modest levels of warming) because 

 
42 The budget constraint in the no adaptation scenario can be thought of as a resilience threshold. For small amounts of 
warming, roads and their maintenance systems are adequate to meet increased stress.  Once that resilience threshold is 
exceeded, costs increase quickly as road damage occurs.   

UNDERLYING DATA SOURCES AND LITERATURE 

Neumann, J. E., Chinowsky, P., Helman, J., Black, M., Fant, C., Strzepek, 
K., & Martinich, J. (2021).  Climate effects on US infrastructure: the 
economics of adaptation for rail, roads, and coastal development. 
Climatic Change. https://doi.org/10.1007/s10584-021-03179-w 

Neumann, J. E., Price, J., Chinowsky, P., Wright, L., Ludwig, L., Streeter, 
R., Jones, R., Smith, J. B., Perkins, W., Jantarasami, L., & Martinich, J. 
(2015). Climate change risks to US infrastructure: impacts on roads, 
bridges, coastal development, and urban drainage. Climatic Change, 
131, 97-109. Doi:10.1007/s10584-013-1037-4 
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of optimization of the capital cost of resilience investments and the high payoff to these investments in 
terms of avoiding future repairs and delays. 

FIGURE B-28. ROADS IMPACTS BY TEMPERATURE BIN DEGREE 

A. 2010 SOCIOECONOMICS 

 

 
 

B. 2090 SOCIOECONOMICS 

 

 
Total impacts ($billions) by degree (°C) for each variant for two socioeconomic snapshots (2010 and 2090 using the default 
scenarios). The extrapolated portions of the impact function are shown with a dashed line. Note the figure scale varies by 
plot. 

Processing steps 

TABLE B-15. INCOMING DATA CHARACTERISTICS: ROADS 

Data Features Roads Attributes 

Evaluated Impacts  • Road Damage and Delay (economic) 
Variants • No Additional Adaptation 

• Reactive Adaptation 
• Proactive Adaptation 

Data Shape • Annual, 2006-2099 
• Six GCMs (standard CIRA set) 
• ¼ degree grid level 
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Data Features Roads Attributes 

Model Type • Simulation 
Runs Provided • With socioeconomic growth and with climate change 

• Without socioeconomic growth and with climate change 

• Without socioeconomic growth and without climate change (baseline 
runs; one baseline per adaptation scenario) 

Additional Data • ¼ degree road inventory 
Regions and States with Impacts • All CONUS regions and states 

Processing steps are seen in Figure B-29. Quarter-degree resolution damages and road inventory data are 
provided by the Neumann et al., (2021) study authors and are allocated to each state. Grid cells that cross 
state lines are distributed proportionally by the percentage of area within each state. In the next pre-
processing step, the baseline is subtracted from projected damages to isolate damages associated with 
climate change for each GCM, year, and adaptation scenario combination. The No Additional Adaptation 
and Reactive Adaptation Scenarios have the same baseline, a simple 20-year period repeated across time. 
We take the mean of this repeating baseline and apply it to all Reactive and No Additional Adaptation 
damages. The Proactive baseline is more complicated. It consists of 30 years of elevated but decreasing 
costs to begin the century, and from 2036 onwards is repeating 20-year period below Reactive and No 
Additional Adaptation. This is meant to model the high initial investments in the Proactive scenario and 
their resulting lower costs later in the century. We take the mean of three 10-year periods to begin the 
century and apply the mean of 2036-2099 to all other values. In step 3, net damages are summarized to the 
state level and divided by total miles of road within a state to produce damages in terms of dollars per mile. 
Lastly, state damages are binned by degree of CONUS temperature change for each GCM by averaging 
across the 11-year windows where each GCM reaches each integer degree of CONUS warming relative to 
the baseline.  

To account for additional repair due to increased traffic on damaged roads with increases in population, a 
population-dependent scalar is also calculated. The allocation of traffic by passenger and freight was not 
reported in the data provided by the underlying papers, and as the allocation of total damages between 
delay and repair cost is not provided, an aggregate scalar must be used to make the traffic adjustment. This 
scalar is based on the percent increase in damages across the century when the underlying model is run 
with population growth compared to a run with static population. There is a unique scalar for each of the 
three adaptation scenarios. 
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FIGURE B-29. ROADS DATA PROCESSING FRAMEWORK 

 

When FrEDI is run, the pre-processed by-degree damages per mile functions are then applied to the input 
temperature scenario to calculate the unadjusted annual impacts per mile based on the level of warming in 
each year of the input scenario. Annual damages per mile are then scaled by state-level road miles and the 
socioeconomic scalar to account for changes in future population. For the proactive scenario, note that 
because repair under this scenario strengthens road surfaces pre-emptively, before damage occurs and 
with a planned road closure, delay times are approximately half the projected delays for no adaptation and 
reactive adaptation– see Neumann et al. (2021) for details. 

Limitations and Assumptions 

• The model assumes a fixed capital and maintenance expense budget, which is usually exhausted at 
some point under the no-adaptation scenario. This time dependency of the no adaptation scenario 
is difficult to eliminate in the data processing steps, which could bias the estimate up or down, 
depending on the speed of warming relative to the underlying scenarios. This bias is expected to be 
relatively small and the use of GCM average results minimizes this potential bias. 



Technical Documentation for the Framework for Evaluating Damages and Impacts (FrEDI)  

                Page B-66 

• Damages to vehicles associated with incompletely maintained roads are modeled only in the no 
adaptation scenario; the model assumes roads are completed repaired and thus vehicles receive no 
damage under the reactive and proactive adaptation scenarios.  

• For further discussion of the limitations and assumptions in the underlying sectoral model see 
Neumann et al. (2021), Neumann et al. (2015), and U.S.EPA’s 2017 Multi-Model Framework for 
Quantiative Sectoral Impacts Analysis). 

• There is no adjustment made to the valuation of passenger and freight delay over time. While 
passenger delay could be adjusted with increases in average wage rate, freight delay is a more 
complicated amalgamation of lost time, fuel costs, and the wage rate for driver(s). 

 

Asphalt Roads  

Summary 

This sector estimates the cost of asphalt road 
maintenance in the CONUS associated with climate 
change. This sector does not model any adaptation 
scenarios.  

Future impacts are quantified by comparing historical asphalt grades (values associating pavement 
temperature and performance) and those associated with future climate projections. This analysis includes 
four roadway types: interstates, national routes, state routes, and local roads. Impacts are based on the 
cost of maintaining the standard practice of material selection for asphalt road maintenance rather than 
employing proactive pavement adaptation. Costs per lane mile are multiplied by total state asphalt lane 
miles to produce a total damage estimate in a state. Note that this sector impact accounts for a subset of 
impacts in the FrEDI ‘Roads’ sector. Therefore, to avoid double counting, users should not add the asphalt 
road damages to those damages in the Roads sector. Note that asphalt lane miles are constant throughout 
the century, therefore only one set of impacts is shown in the figure. For illustrative purposes, Figure B-30 
shows the resulting damages by degree of warming by GCM. 

UNDERLYING DATA SOURCES AND LITERATURE 

Underwood, B. S., Guido, Z., Gudipudi, P., & Feinberg, Y. 
(2017). Increased costs to US pavement infrastructure 
from future temperature rise. Nature Climate Change, 7, 
704-707. Doi:10.1038/nclimate3390  
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FIGURE B-30. ASPHALT ROADS IMPACTS BY TEMPERATURE BIN DEGREE 

  
Total impacts ($billions) by degree (°C), which do not vary by socioeconomic scenario or time. The extrapolated portions of 
the impact function are shown with a dashed line.  

Processing steps 

TABLE B-16. INCOMING DATA CHARACTERISTICS: ASPHALT ROADS 

Data Features Asphalt Roads Attributes 
Evaluated Impacts • Maintenance Costs (economic)a 
Variants • No additional adaptation 
Data Shape • 30-year era total costs 

• Three GCMs  
• By weather station 

Model Type • Simulation 
Runs Provided • No socioeconomic growth and with climate change 
Additional Data • Lane Miles 
Regions and States with Impacts • All CONUS regions and states (excluding DC) 
Notes: 
a. Maintenance costs are meant to represent the costs of failing to update asphalt temperature grades over time. 

This study sector relies on different climate data that additionally needs to be pre-processed for this sector 
to be included in FrEDI. Underwood et al. (2017) selected 19 climate models from CMIP5 from the archives 
of the Climate Analytics Group, three of which (CanESM2, CCSM4, and MIROC5) overlap with the suite of 
GCMs used in FrEDI. Although this study used the same GCMs, the bias correction and downscaling 
processes used by Climate Analytics Group differed from those used in the LOCA climate dataset (used in 
many of the FrEDI studies); therefore, new temperature bins are defined for the relevant new climate 
scenarios and related baselines. RCP8.5 results for these models are used for consistency with other FrEDI 
sectors. Maximum and minimum daily temperature data for these three GCMs were processed in the 30-
year periods employed by the study to determine future annual temperatures associated with the era-level 
GCM-specific asphalt road damage estimates available from the study. The temperature hindcast was 
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subtracted from yearly projected temperature to identify GCM-specific integer degree arrival years that 
were used for temperature binning of impacts for this sector.  

Remaining processing steps are seen in Figure B-31. In the first pre-processing step, the total asphalt road 
maintenance costs for three 30-year eras from the Underwood et al., (2017) study are summed to the state 
level and divided by the number of road miles in each state to derive state-level costs per mile. These 
impacts are available for all GCMs and states for three eras: 2010 (2010-2039), 2040 (2040-2069), and 2070 
(2070-2099), as well as a baseline era, which are assigned to 1995 (1986-2005). In the next step, baseline 
impacts are subtracted from projected impacts for each GCM to arrive at maintenance costs associated 
with climate change for each era. Costs per mile associated with each era are then interpolated to derive 
annual costs, which are then binned by degree of CONUS temperature change for each GCM by averaging 
across the 11-year windows (as described above) where each GCM reaches each integer degree of CONUS 
warming relative to the baseline.  

FIGURE B-31. ASPHALT ROADS DATA PROCESSING FRAMEWORK 

 

When FrEDI is run, the pre-processed by-degree costs per lane mile functions are then applied to the input 
temperature scenario to calculate the unadjusted annual costs per lane mile based on the level of warming 
in each year of the input scenario. Total cost is then calculated by scaling these unadjusted results by the 
total lane miles in each state.  
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Limitations and Assumptions 

• The underlying study uses a different set of climate projections (Climate Analytics Group) from most 
of the sectors that use LOCA, and a different baseline. While using a difference from the baseline 
and adjusting temperature arrival times is an attempt to correct any bias introduced, it is possible 
that these different climate projections and differences in the baseline create inconsistencies 
between this non-CIRA sector and other CIRA sectors.   

• The underlying study includes a suite of 19 climate models, three of which are part of the CIRA suite 
of GCMs (CanESM2, CCSM4, and MIROC5). These three models reach warmer temperatures more 
quickly than the average across all 19 models in Underwood et al. (2017), and thus result in a higher 
average estimate of damages compared to the results presented in the paper. However, compared 
to the full suite of 38 CMIP5 GCMs, the three models are relatively close to the median temperature 
change values in 2090. 

• The model references, but does not quantify, impacts of a proactive adaptation scenario. Therefore, 
uncertainty exists in how the modeled maintenance costs may be reduced due to adaptive actions 
or technologies. 

• For further discussion of the limitations and assumptions in the underlying sectoral model see 
Underwood et al. (2017). 

Urban Drainage 

Summary 

This sector study estimates the costs of 
proactive adaptation for urban drainage 
systems in 100 major coastal and non-coastal 
cities of the CONUS to meet future demands 
of increased runoff associated with more 
intense rainfall under climate change.  

Adaptive actions focus on the use of best 
management practices to limit the quantity 
of runoff entering stormwater systems and 
maintain current level of service (i.e., 
proactive adaptation to avoid damages), instead of expanding formal drainage networks of basins and 
conveyance systems. These best management practices generally include temporary storage above or 
below ground (e.g., bioswales, retention ponds), or infiltration (e.g., permeable pavement), and are based 
on EPA guidelines and construction cost estimates (see Price et al., (2016) for additional details). 

Specifically, the analysis uses a reduced-form approach for projecting changes in flood depth and the 
associated costs of flood prevention under future climate scenarios, based an approach derived from EPA’s 
Storm Water Management Model (SWMM). The approach assumes that systems are able to manage runoff 
associated with historical climate conditions and estimates the costs of implementing the adaptation 

UNDERLYING DATA SOURCES AND LITERATURE 

Price, J., Wright, L., Fant, C., & Strzepek, K. (2016). Calibrated 
Methodology for Assessing Climate Change Adaptation Costs for 
Urban Drainage Systems. Urban Water Journal, 13 (4), 331-344. 
Doi:10.1080/1573062X.2014.991740  

Neumann, J., Price, J., Chinowsky, P., Wright, L., Ludwig, L., 
Streeter, R., Jones, R., Smith, J.B., Perkins, W., Jantarasami, L., and 
Martinich, J. (2015). Climate change risks to U.S. infrastructure: 
Impacts on roads, bridges, coastal development, and urban 
drainage. Climatic Change, 131, 97–109. 
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measures necessary to manage increased runoff due to climate change. Impacts are estimated in units of 
average adaptation costs per square mile for a total of 100 cities across the CONUS for three categories of 
24-hour storm events (those with precipitation intensities occurring every 10, 25, and 50 years—metrics 
commonly used in infrastructure planning) and four future eras periods: 2030 (2020-2039), 2050 (2040-
2059), 2070 (2060-2079), and 2090 (2080-2099). For illustrative purposes, Figure B-32 shows the resulting 
damages by degree of warming by GCM. 

FIGURE B-32. URBAN DRAINAGE IMPACTS BY TEMPERATURE BIN DEGREE 

 

 
Total impacts ($billions) by degree (°C), which do not vary by socioeconomic scenario or arrival time. The extrapolated 
portions of the impact function are shown with a dashed line.  

Processing steps 

TABLE B-17. INCOMING DATA CHARACTERISTICS: URBAN DRAINAGE 

Data Features Urban Drainage Attributes 

Evaluated Impacts • Adaptation Costs (Economic) 
Variant • Proactive Adaptation 
Data Shape • Four 20-year eras (2030, 2050, 2070, 2090) 

• Five GCMs (standard CIRA set without GFDL) 

• By city 
• 10-year, 25-year, and 50-year storms 

Model Type • Simulation 
Runs Provided • No socioeconomic growth and with climate change 
Additional Data • Land area by city 
Regions and States with Impacts • Midwest 

• Northeast (excluding CT, DE, ME, NH, NJ, RI, VT, WV) 
• Northern Plains (excluding MT, ND, SD, WY) 



Technical Documentation for the Framework for Evaluating Damages and Impacts (FrEDI)  

                Page B-71 

Data Features Urban Drainage Attributes 

• Northwest 
• Southeast (excluding MS, SC) 
• Southern Plains 
• Southwest (excluding UT) 

Processing steps are seen in Figure B-33. The adaptation costs per square mile (weighted by area) for the 
50-year storm for each GCM, city, scenario, and era combination are from Price et al. (2016). In the first 
step, these data are aggregated to the state level.43 Unlike most other underlying studies, the Urban 
Drainage study does not produce an annual time series of results, due in part to the impact of extreme 
events which are not well-characterized at an annual scale. Therefore, in the next step, linear interpolation 
is used to create an annual time series of values for each GCM, scenario, and state combination for the 
period 1995-2099, using the known damage values at each of the four 20-year eras. Values are 
extrapolated for 2090-2099 using the linear trend observed between the 2070 and 2090 eras, and values 
for years prior to 2030 are estimated by using 1995 as a baseline year, i.e., impacts are assumed to be zero 
in 1995 and results are interpolated linearly between 1995 and 2030. Lastly, adaptation costs by state are 
binned by degree of CONUS temperature change for each GCM by averaging across the 11-year windows 
(as described above) where each GCM reaches each integer degree of CONUS warming relative to the 
baseline. 

 
43 For example, for a state with 2 cities, each with an area of 100 square miles, each city’s area is divided by the sum of the 
areas, resulting in a proportion value of 0.5 for each city. This proportion value is then multiplied by each calculation of per-
square-mile adaptation costs (calculated by storm, scenario, and year) to produce a weighted average adaptation cost per 
square mile. Note that the intensity/size of the 50-year storm varies with GCM, city, scenario, and era. The method yields 
changes in the absolute size of the storm over time and space, rather than the change in the frequency of the base period 
50-year storm event. 
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FIGURE B-33. URBAN DRAINAGE DATA PROCESSING FRAMEWORK 

 

When FrEDI is run, the pre-processed by-degree cost functions are then applied to the input temperature 
scenario to calculate the annual costs based on the level of warming in each year of the input scenario. 

Limitations and Assumptions 

• The underlying analysis assumes that the systems are able to manage runoff associated with 
historical climate conditions and estimates the costs of implementing the adaptation measures 
necessary to manage increased runoff due to climate change. 

• Inclusion of all U.S. cities with stormwater conveyance systems would provide a more 
comprehensive characterization of future impacts. The underlying study is limited to 100 major 
U.S. cities. Therefore, the current estimates included for this sector represent underestimates of 
potential damages. 

• For further discussion of the limitations and assumptions in the underlying sectoral model see 
Neumann et al. (2015), Price et al. (2016), and U.S.EPA’s 2017 Multi-Model Framework for 
Quantitative Sectoral Impacts Analysis.    
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Inland Flooding 

Summary 

This sector study estimates the impact of 
riverine flooding in the CONUS 
attributable to climate change on 
property value.  

The analysis uses change in expected 
annual damage (EAD) from flooding at 
each property in the U.S. under different 
temperature scenarios to value riverine 
flood impacts. The underlying data 
considers flooding for return intervals of 
two years through 500 years. Study 
authors calculate a frequency-loss curve for each property and integrate under the curve between flood 
frequencies of 0.0001 and 0.10 to calculate the EAD. The data excludes flooding events associated with 
urban drainage, quantifying only riverine floods instead. As a result, this sector does not account for all 
flooding events in cities and other urban areas; pluvial floods (associated with localized high rainfall events) 
are assessed in the Urban Drainage sector. The method applied estimates the baseline annual EAD using 
current structure characteristics (e.g., ground level floor elevation44, replacement cost, market value), the 
flood depths associated with baseline conditions for varying return periods45, and depth-damage functions 
available from FEMA’s HAZUS documentation.46 The underlying study model provides estimates of 
projected property damage at multiple spatial scales – for this work, results were provided at the Census 
block group level; properties were grouped by Census block group and EAD values summed under baseline 
and future climate scenarios. Property values are held constant over the course of the century, and impacts 
are projected under a “no additional adaptation” scenario. For illustrative purposes, Figure B-34 shows the 
resulting damages by degree of warming for the average GCM ensemble.  

 
44 These characteristics were made available to the study team by the First Street Foundation. Details of the dataset are 
provided in: First Street Foundation, 2020a. The First National Flood Risk Assessment: Defining America’s Growing Risk. 
Available at 
https://assets.firststreet.org/uploads/2020/06/first_street_foundation__first_national_flood_risk_assessment.pdf 
45 Details of the “current climate” baseline flood risk modeling can be found in First Street Foundation, 2020b. First Street 
Foundation Flood Model: Technical Methodology Document. Available: 
https://assets.firststreet.org/uploads/2020/06/FSF_Flood_Model_Technical_Documentation.pdf 
46 FEMA, undated. Multi-hazard Loss Estimate Methodology: Flood Model Technical Manual. 
https://www.fema.gov/sites/default/files/2020-09/fema_hazus_flood-model_technical-manual_2.1.pdf 

UNDERLYING DATA SOURCES AND LITERATURE 

Wobus, C.W., Porter, J., Lorie, M., Martinich, J., & Bash, R. (2021). 
Climate change, riverine flood risk and adaptation for the 
conterminous United States. Environmental Research Letters.  doi: 
10.1088/1748-9326/ac1bd7. 

Wobus, C.W., Zheng, P., Stein, J., Lay, C., Mahoney, C., Lorie, M., 
Mills, D., Spies, R., Szafranski, B., & Martinich, J. (2019). Projecting 
Changes in Expected Annual Damages From Riverine Flooding in 
the United States. Earth’s Future, 7(5), 516-527. 
Doi:10.1029/2018EF001119 
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FIGURE B-34. INLAND FLOODING IMPACTS BY TEMPERATURE BIN DEGREE 

  
Total impacts ($billions) by degree (°C), which do not vary by socioeconomic scenario or time. The extrapolated portions of 
the impact function are shown with a dashed line.  

Processing steps 

TABLE B-18. INCOMING DATA CHARACTERISTICS: INLAND FLOODING 

Data Features Inland Flooding Attributes 

Evaluated Impacts  • Expected annual flood damage (economic) 
Variant • No additional adaption 
Data Shape • Baseline Period (2001-2020)a 

• Integer degree (1-6) 
• GCM Average (14 models including standard CIRA set) 

• Block Groups 
Model Type • Simulation 
Runs Provided • With socioeconomic growth and with climate change 
Additional Data • None 
Regions and States with Impacts • All CONUS regions and states 
Notes: 
a. Baseline period is not shifted to FrEDI standard 1986-2005 because the damages presented are delta damage/delta temperature 
and damage curves are smoothed linearly. 

Processing steps are shown in Figure B-35. Wobus et al. (2021) study authors provided damages by degree 
by Census block group, as well as baseline EAD for the period 2001-2020. Impacts are averaged for one 
“GCM Ensemble”, which includes fourteen models: ACCESS1-0, CanESM2, CESM1-CAM5, CMCC-CM, CSIRO-
Mk3-6-0, FGOALS-g2, GFDL-CM3, HadGEM2-AO, HadGEM2-CC, HadGEM2-ES, IPSL-CM5B-MR, MIROC-ESM-
CHEM, MIROC-ESM, and NorESM1-M. In the underlying study, authors use the projected hydrology for each 
climate model to extract an annual maximum flow timeseries for a 20-year window centered on the year 
that the model reaches temperature thresholds of 1°C through 5°C above the 2001-2020 baseline. 
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In the first pre-processing step, block group damages are summed to state damages. Next, the baseline EAD 
is subtracted from projected EAD by degree to isolate impacts attributable to climate change and values are 
deflated from 2020 dollars to 2015 dollars (FrEDI’s default).  

FIGURE B-35. INLAND FLOODING DATA PROCESSING FRAMEWORK 

 

When FrEDI is run, the pre-processed by-degree damage functions are then applied to the input 
temperature scenario to calculate the total annual damages based on the level of warming in each year of 
the input scenario. 

 

Limitations and Assumptions 

• The analysis does not evaluate the potential for adaptation measures to mitigate flood risk at the 
property or community levels. 

• The analysis does not account for changes in population and development within flood risk zones. 
Without a reasonable method to predict future floodplain development or policies governing 
development, these factors are held constant. The underlying analysis also holds property values 
constant over time – as noted in the Neumann et al. (2021) study that is the basis for the Coastal 
Properties sector analysis in FrEDI, there is evidence that real property values grow with changes in 
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income (proxied by per capita GDP) over time. As a result, the inland flood risks in Wobus et al. 
(2021) may be underestimated. 

• This analysis relates increases in CONUS temperatures to changes in economic impacts of riverine 
floods. While climate science indicates that warming temperatures accelerate the hydrologic cycle, 
which in turn increase river flows, changes in near-surface temperatures do not necessarily 
characterize local or regional precipitation changes, or river flows, with a consistent signal. Local 
precipitation changes may also be correlated with other drivers that are not necessarily well 
correlated with CONUS or regional scale temperature changes, e.g., the El Nino Southern Oscillation 
(ENSO). The study used here (Wobus et al., 2021), however, finds a monotonic trend of increases in 
the economic impact of floods at the CONUS scale (aggregated from the property level) as CONUS 
temperatures rise, supporting the relationship between CONUS temperature changes and state-
level flood impacts. 

• For further discussion of the limitations and assumptions in the underlying sectoral model see 
Wobus et al. (2021) and Wobus et al. (2019).  

 

Hurricane Wind Damage 

Summary 

This sector study estimates the impact of 
changes in the frequency of hurricane 
strength wind damage to coastal 
properties in the CONUS. The results are 
primarily based on analysis by Dinan 
(2017), which projects hurricane damage 
from both wind and storm surge to 
properties in the Gulf and Atlantic coast 
states using a proprietary model 
developed by the firm Risk Management 
Solutions (RMS). Dinan (2017) projected 
changes in future hurricane frequency by hurricane category (Saffir-Simpson scale of Category 1 to 
Category 5) using a Monte Carlo aggregation of results from Emanuel (2013) for RCP8.5 and Knutson (2013) 
for RCP4.5.47 The hurricane projections used in Dinan (2017) do not readily convert to an impact-by-degree 
warming indexing, so as part of processing this analysis instead relies on results from more recent Marsooli 
et al. (2019) study which provides change in return periods, maximum wind speed, and Category 5 storm 
frequency for the a late century period using an updated version of the Emanuel (2013) model48, to project 

 
47 See Emanuel, K., 2013. Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st 
century. Proc. Natl. Acad. Sci. 110 (30), 12219–12224, and Knutson, T., et al., 2013. Dynamical downscaling projections of 
twenty-first-century Atlantic hurricane activity: CMIP3 and CMIP5 model-based scenarios. J. Clim. 26 (17), 6591–6617. 
48 Ibid. 

UNDERLYING DATA SOURCES AND LITERATURE 

Dinan, T., (2017). Projected increases in hurricane damage in the 
United States: the role of climate change and coastal 
development. Ecol. Econ. 138: 186–198. 
https://doi.org/10.1016/j.ecolecon.2017.03.034.  

Congressional Budget Office (CBO). (2016). Potential Increases in 
Hurricane Damages in the United States: Implications for the 
Federal Budget. Washington, DC. June 2016 

Marsooli, R. Lin, N., Emanuel, K., Feng, K. (2019). Climate change 
exacerbates hurricane flood hazards along US Atlantic and Gulf 
Coasts in spatially varying patterns. Nature Communications. 
https://doi.org/10.1038/s41467-019-11755-z  
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future hurricane activity by degree of warming for a set of GCMs. Further, because the detailed spatial and 
climate stressor specific results are not publicly accessible, we worked with Dinan, RMS, and other publicly 
available data to generate an estimate of damages attributable to climate change induced changes in wind 
damage to properties. -For illustrative purposes, Figure B-36 shows the resulting damages by degree by 
GCM. 

FIGURE B-36. HURRICANE WIND DAMAGE IMPACTS BY TEMPERATURE BIN DEGREE 

 

Total impacts ($billions) by degree (°C), which do not vary by socioeconomic scenario or time. The extrapolated portions of 
the impact function are shown with a dashed line.  

Processing steps 

TABLE B-19. INCOMING DATA CHARACTERISTICS: HURRICANE WIND DAMAGE 

Data Features Hurricane Wind Damage Attributes 

Impact Types • Cost of hurricane wind damage to coastal properties (economic) 
Variants • No additional adaptation 
Data Shape • Single values representing baseline period (1980-2005) and 

projection period (2070-2095) 
• Five GCMs (CCSM4, GFDL-CM3, HadGEM2-ES, MIROC5, MRI-

CGCM3) 
• County-level 

Model Type • Simulation 
Runs Provided • No socioeconomic growth with climate change 
Additional Data • None 
Regions and States with Impacts • Northeast (excluding VT, WV) 

• Southeast (excluding AR, KY, TN) 
• Southern Plains (excluding KS, OK) 
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Processing steps are shown in Figure B-37. The first pre-processing step is to collect hurricane wind damage 
data from Dinan (2017), county level storm surge data from the National Coastal Property Model (NCPM), 
and wind profile change data from Marsooli et al., (2019).  

The second pre-processing step is to estimate baseline and projected wind damages from these data. 
Baseline wind damage is calculated by parsing data on total hurricane damage by state from Dinan et al., 
(2017), reported in CBO (2016), into wind and storm surge components by state, using data on the ratio of 
wind to storm surge damage by state provided by the study authors (with permission from RMS). Wind 
damages by state are allocated to the county scale by using weights derived from the NCPM for county-
level storm surge damage attributed to hurricanes in the year 2000 (base year with no SLR). This allocation 
method assumes that storm surge and wind damage are correlated but exclude some non-coastal inland 
counties which might be expected to incur wind damage (albeit with significant decay of wind speed 
relative to coastal counties). 

Projected wind damages are then calculated using these baseline wind damages and projected wind profile 
changes. Wind profile changes are projected using estimates reported in Marsooli et al. (2019), which 
provides gridded estimates of the max wind speed and frequency of the 90th percentile event from an 
ensemble of simulated tropical cyclones for the Gulf and Atlantic Coasts for both the baseline of 1980–2005 
to the future period of 2070–2095. The grid-cell results are spatially reaggregated to coastal counties. The 
future wind damages are then projected using ratios of future damage to baseline damage for each coastal 
county that employ a logistic function proposed by Emanuel et al. (2012) for the baseline and five of the six 
GCMs evaluated in Marsooli et al. (2019).49 Although this study uses mostly CIRA GCMs, the bias correction 
and downscaling processes differed from those used in the LOCA climate dataset. Therefore, new 
temperature bins are defined for the relevant new climate scenarios. These ratios are applied to the 
baseline damage estimated above, and baseline damages are subtracted to estimate future damages 
attributed to climate change. To interpolate between the baseline and projection, the baseline is assigned 
to 1986-2005 (FrEDI baseline) and the projection to 2070-2095, resulting in linear interpolation between 
1995 and 2082. For extrapolation beyond 2082 the county-specific linear function is extended to 2099. 
Damages are then aggregated to the state level for each of the relevant GCMs and binned by degree of 
CONUS temperature change for each GCM by averaging across the 11-year windows (as described above) 
where each GCM reaches each integer degree of CONUS warming relative to the baseline.  

 
49 MPI excluded due to data availability issues. 
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FIGURE B-37. HURRICANE WIND DAMAGE IMPACT PROCESSING FRAMEWORK 

 
When FrEDI is run, the pre-processed by-degree cost of hurricane wind damage functions are then applied 
to the input temperature scenario to calculate the total annual costs based on the level of warming in each 
year of the input scenario.  

The results indicate good agreement for four of the five models, with the fifth (GFDL) showing much higher 
damages than the other four. We considered applying skill weighting of the GCMs using weights provided in 
Marsooli et al. (2019) – the results using skill-weighting down-weight GFDL relative to other models, 
reducing the mean damages across all GCMs by about one-third – but the skill weights were calculated for 
wind speed rather than damage (damage is a non-linear logistic function of wind speed, capped at the high 
end by total structure value).  The non-skill weighted results are used here for consistency with other 
sectoral analyses. 

 

Limitations and Assumptions 

• Hurricanes are extreme events and are observed infrequently, which both limits the observed 
damage data on which estimates can be based and complicates estimates of projected hurricane 
activity. The Marsooli et al. (2019) study used here employs a well-regarded model of projected 
hurricane activity which provides results needed to estimate projected damages on a spatially 
disaggregated basis, but other models could yield different results. 

• The underlying economic impact study relies on a proprietary model of hurricane wind and storm 
surge damages; the detailed county and scenario specific results from the model are not available 
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for use in the Framework. The published results are therefore disaggregated from publicly available 
total estimates into storm surge and wind using storm surge estimates from the Coastal Properties 
sector. This procedure ensures that damage estimates are not double counted but introduces error 
and uncertainty in the estimates used here. 

• Results from the underlying study were made available only at the state level, but analyses of 
projected storm surge damages are at the county level, and estimates of future hurricane activity 
are at a grid cell level. Adjustments made for spatial mismatches also introduce error and 
uncertainty in the estimates used here. 

• This analysis interpolates linearly between the baseline period and late century (2070-2095) 
projection with no intermediate damage estimates, so mid-century values are less precise than 
other sectors. 

• For further discussion of the limitations and assumptions in the underlying sectoral model see 
Dinan et al. (2017) and Marsooli et al. (2019).  

  



Technical Documentation for the Framework for Evaluating Damages and Impacts (FrEDI)  

                Page B-81 

B.4 Electricity Sectors  

Electricity Demand and Supply 

Summary 

This sector estimates increases in system 
costs to the power sector in the CONUS. 
These system costs include capital, fuel, 
variable operation and maintenance 
(O&M), and fixed O&M costs.  

Increased costs are based on projected 
changes in demand for and supply of 
electricity across generation types 
associated with changes in temperature, but also reflect projected technological change that alters relative 
prices for energy supply technologies in both baseline and “with climate change” projections. Effects on 
energy demand reflect the net impact of increased demand for residential, commercial, and industrial 
space cooling during summer/warmer months, and decreased demand for space heating during 
winter/cooler months. Effects on supply reflect the decreased production capacity of thermal power plants, 
and transmission capacity of the transmission system, associated with higher temperatures.50 The complex 
interplay of supply and demand, coupled with forecast changes in fuel and energy production technology 
availability and prices, are modeled using the Global Change Assessment Model (GCAM-USA), a detailed 
service-based building energy model with a 50-state domain.   

Costs are provided for a reference scenario, in which climate is held constant to the FrEDI baseline while 
socioeconomic variables are dynamic, and a projection run in which both climate and socioeconomic 
variables are changing. Estimates of costs with and without climate change are provided in five-year 
intervals.  

For illustrative purposes, Figure B-38 shows the resulting damages by degree of warming by GCM, 
calculated using 2010 (panel A) and 2090 (panel B) socioeconomics (i.e., the endpoints of the 
socioeconomic scenarios). 

 
50 Note that the transmission system effects in this sector are separate from those modeled in the Electricity Transmission 
and Distribution Infrastructure sector. This study considers only the temperature driven changes in line ampacity, while 
Electricity Transmission and Distribution infrastructure sector examines the vulnerability of specific other components of 
the transmission system to climate stress (e.g., the effect of temperature on the longevity of power transformer 
equipment).  

UNDERLYING DATA SOURCES AND LITERATURE 

McFarland, J., Zhou, Y., Clarke, L., Sullivan, P., Colman, J., Jaglom, 
W. S., Colley, M., Patel, P., Eom, J., Kim, S. H., Kyle, G. P., Schultz, 
P., Venkatesh, B., Haydel, J., Mack, C., & Creason, J. (2015). 
Impacts of rising air temperatures and emissions mitigation on 
electricity demand and supply in the United States: a multi-model 
comparison. Climatic Change, 131, 111-125. Doi:10.1007/s10584-
015-1380-8 
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FIGURE B-38. ELECTRICITY DEMAND AND SUPPLY IMPACTS BY TEMPERATURE BIN DEGREE 
A. 2010 SOCIOECONOMICS    B.  2090 SOCIOECONOMICS 

   

 
Total impacts ($billions) by degree (°C) for two socioeconomic snapshots (2010 and 2090 using the default scenarios). The 
extrapolated portions of the impact function are shown with a dashed line. Note the figure scale varies by plot. 

Processing steps 

TABLE B-20. INCOMING DATA CHARACTERISTICS: ELECTRICITY DEMAND AND SUPPLY 

Data Features Electricity Demand and Supply Attributes 

Evaluated Impacts  • Power Sector System Costs (economic) 
Variants • No additional adaptation 
Data Shape • 5-year intervals 2010-2100 

• Six GCMs (standard CIRA set) 
• State-level 

Model Type • Simulation 
Runs Provided • With socioeconomic growth and with climate change 

• With socioeconomic growth and without climate change 
(reference scenario) 

Additional Data • None 
Regions and States with Impacts • All CONUS regions and states 

Processing steps for this sector are shown in Figure B-39. Data from the McFarland et al., (2015) study 
authors on the system costs for the power sector are provided for each GCM and a climate reference 
scenario for each state in 5-year intervals. In the first pre-processing step, the annual sum of power system 
costs (e.g., capital, fuel, variable O&M, and fixed O&M) are interpolated between the 5-year interval data 
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for both GCM projections and the reference scenario to create an annual trajectory. Next, the percent 
differences between the reference scenario and the GCM projected scenarios are calculated for each state-
GCM-year combination. These percentages are then multiplied by their respective 2010 reference scenario 
value to calculate a damage trajectory that represents climate change with no socioeconomic growth. The 
resulting no-growth trajectory is then binned by degree of CONUS temperature change by averaging across 
the 11-year windows where each GCM reaches each integer degree of CONUS warming relative to the 
baseline. To produce state level scalars for socioeconomic growth, each state’s yearly reference scenario 
value is divided by its 2010 value to index the scalar to 2010.  

FIGURE B-39. ELECTRICITY DEMAND AND SUPPLY DATA PROCESSING FRAMEWORK 

 
When FrEDI is run, the pre-processed by-degree system costs are then applied to the input temperature 
scenario to calculate the unadjusted annual system costs based on the level of warming in each year of the 
input scenario. These costs are then multiplied by the socioeconomic scalar for each given year to produce 
total cost estimates across the century.  

Limitations and Assumptions 

• Projected changes in heating degree days (HDD) and cooling degree days (CDD) are based on a 
temperature set-point of 65°F, a common convention that may lead to a conservative energy 
demand estimate. 
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• The temporal aggregation of the underlying electricity supply model is too coarse to assess the 
impact of extreme temperature events that occur on only the very hottest days of the year. As a 
result, the underlying study focuses on a single aspect of climate change: average ambient air 
temperature, and therefore omits effects of extreme temperature effects on peak demands and the 
loads required to meet those changes. Effects from future changes in the frequency and magnitude 
of extreme temperatures may stress electric power systems, and these economic risks are not 
captured in this study. 

• The impact estimates reflect direct costs only, and do not capture how these increased costs more 
broadly affect consumers (consumption/welfare) or production costs in other sectors. 

• For further discussion of the limitations and assumptions in the underlying sectoral model, see 
McFarland et al. (2015). 

Electricity Transmission and Distribution Infrastructure 

Summary 

This analysis estimates damages to the 
electric transmission and distribution 
infrastructure in the CONUS due to climate 
change. This multi-dimensional analysis 
considers a wide range of climate stressors, including extreme temperature, extreme rain, lightning, 
vegetation growth, wildfire activity, and coastal flooding. Impact receptors include transmission and 
distribution lines, poles/towers, and transformers. 

Monetized damages for this sector are the costs of repair or replacement of damaged infrastructure. The 
underlying impact study estimates damages under two infrastructure system scenarios: one with expansion 
of infrastructure associated with demand growth, and one with static infrastructure. Increases in demand 
growth may be due to population growth, or increased demand due climatic change — in particular, 
warmer temperatures increase usage of air-conditioning. The model identifies changes in performance and 
longevity of physical infrastructure, such as power poles and transformers, and quantifies these impacts in 
economic terms. While certain climate stressors do cause power outages which have associated direct and 
indirect economic costs, these damages are not included in damage estimates. 

This analysis is based on three adaptation scenarios: proactive adaptation, reactive adaptation, and no 
additional adaptation. Repair costs are also allocated based on the activity being performed. These 
activities include transmission line capacity, wildfire repair, tree trimming, substation sea level rise, 
substation storm surge, wood pole decay, transmission transformer lifespan, and distribution transformer 
lifespan.  

For illustrative purposes, Figure B-40 shows the resulting damages by degree of warming for the three 
adaptation scenarios, by GCM, calculated using 2010 (panel A) and 2090 (panel B) socioeconomics (i.e., the 
endpoints of the socioeconomic scenarios). 

UNDERLYING DATA SOURCES AND LITERATURE 

Fant, C., Boehlert, B., Strzepek, K., Larsen, P., White, A., Gulati, 
S., Li, Y., & Martinich, J. (2020). Climate change impacts and 
costs to U.S. electricity transmission and distribution 
infrastructure. Energy, 195. Doi:10.1016/j.energy.2020.116899 
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FIGURE B-40. ELECTRICITY TRANSMISSION AND DISTRIBUTION INFRASTRUCTURE IMPACTS BY 
TEMPERATURE BIN DEGREE 

A. 2010 SOCIOECONOMICS 

 

 
 

B. 2090 SOCIOECONOMICS 

 
Total impacts ($billions) by degree (°C) for each variant for two socioeconomic snapshots (2010 and 2090 using the default 
scenarios). The extrapolated portions of the impact function are shown with a dashed line. Note the figure scale varies by 
plot. 

Processing steps 

TABLE B-21. INCOMING DATA CHARACTERISTICS: ELECTRICITY TRANSMISSION AND DISTRIBUTION 
INFRASTRUCTURE 

Data Features Electricity Transmission and Distribution Infrastructure Attributes 

Evaluated Impacts • Costs of infrastructure replacement and repair (economic) 
Variants • Proactive adaptation 

• Reactive adaptation 
• No additional adaptation 
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Data Features Electricity Transmission and Distribution Infrastructure Attributes 

Data Shape • Year 
• Six GCMs (standard CIRA set) 
• Three adaptation scenarios 
• State level 

Model Type • Simulation 
Runs Provided • Static infrastructure with climate change 
Additional Data • Infrastructure growth due to population change 

• Infrastructure growth due to climate change 
Regions and States with Impacts • All CONUS regions and states 

Processing steps are seen in Figure B-41. The underlying impact model described in Fant et al. (2020) 
produces annual damage estimates for each infrastructure type, state, GCM, and adaptation scenario. The 
underlying study grows infrastructure with electricity demand increases due to climate change and 
population growth. In the first pre-processing step, to isolate demand growth associated with warming, 
damages associated with static demand are scaled by growth of demand attributable to warming.  

After damages associated with climate driven infrastructure growth are calculated, results are aggregated 
for each GCM, year, and adaptation scenario. The costs are then binned by degree of CONUS temperature 
change for each GCM by averaging across the 11-year windows where each GCM reaches each integer 
degree of CONUS warming relative to the baseline.51 One additional set of scalars is calculated and included 
in FrEDI to account for infrastructure expansion to respond to increased demand from population growth.  

 
51 The substation sea level rise and substation storm surge categories of impact were estimated in the underlying study 
through a custom application of the National Coastal Property Model (Neumann et al. 2021). The key climate hazard to 
substations is sea level rise, however, rather than temperature. Fant et al. (2020) used a set of SLR scenario weights by RCP 
(see USEPA 2017, Table 1.2, available here: https://www.epa.gov/cira/multi-model-framework-quantitative-sectoral-
impacts-analysis) to transform the SLR trajectory based damages to substations to a 21st century damage trajectory for 
RCP8.5, and aggregated results with other categories of damage (e.g., impacts of temperature on transformers). FrEDI 
adopts the same damages aggregation procedure as the underlying paper so that all categories of damages in the resulting 
FrEDI damage function can be expressed as impacts-by-degree. 

https://www.epa.gov/cira/multi-model-framework-quantitative-sectoral-impacts-analysis
https://www.epa.gov/cira/multi-model-framework-quantitative-sectoral-impacts-analysis
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FIGURE B-41. ELECTRICITY TRANSMISSION AND DISTRIBUTION INFRASTRUCTURE DATA PROCESSING 
FRAMEWORK 

 
 

When FrEDI is run, the pre-processed by-degree cost functions are then applied to the input temperature 
scenario to calculate the unadjusted annual costs based on the level of warming in each year of the input 
scenario. Lastly, total annual costs are calculated by scaling the unadjusted costs by the climate-driven 
infrastructure growth and population-driven growth scalars. Thus, final damage estimates include 
expansion of electric grid infrastructure associated with a warming climate and with population growth. 
Note that because these damage estimates rely on an empirical relationship between damages with and 
without infrastructure growth in the underlying study’s impact model, these damage estimates cannot be 
adjusted for custom input population trajectories. 

Limitations and Assumptions 

• The underlying study’s impact model assumes that grid demand is controlled by population change 
and climatic factors; grid demand is assumed to not be influenced by economic growth. Future 
changes in the design and structure of electric grids are not considered in this study. 

• Power outages that might be caused by the infrastructure failures modeled in this study are not 
estimated in the underlying study. As a result, direct and indirect costs of outages are not included.  

• One of the infrastructure types (Substation Damage from Sea Level Rise and Storm Surge) is not 
scaled by demand in the original study. Because the input data received from the authors was 
already aggregated across infrastructure types, all infrastructure types are scaled by demand in 
FrEDI. This has a minimal effect on the overall results because Substation Damage from Sea Level 
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Rise and Storm Surge accounts for the smallest portion of the damages among the final eight types 
considered in the original study.  

• For further discussion of the limitations and assumptions in the underlying sectoral model, see Fant 
et al. (2020).  



Technical Documentation for the Framework for Evaluating Damages and Impacts (FrEDI)  

                Page B-89 

B.5 Ecosystems and Recreation Sectors  

Water Quality 

Summary 

This analysis estimates damages in 
terms of the change in willingness to 
pay to avoid changes in water quality 
due to climate change. This analysis 
estimates climate change effects on 
water quality at the eight-digit 
Hydrological Unit Code (HUC) scale of 
the CONUS using the Hydrologic and 
Water Quality System (HAWQS) 
biophysical model. Note that the 
damages estimated for this sector only 
cover the change in value of 
recreation opportunities (e.g. boating, fishing, swimming) due to changes in a climate water quality index 
developed from the HAWQS outputs and do not include the value of health effects or other amenities 
associated with clean water. 

HAWQS advances the functionality of the widely used and accepted Soil and Water Assessment Tool 
(SWAT), providing a platform for water quality modeling, primarily by minimizing the necessary 
initialization time. Originally developed by the U.S. Department of Agriculture (USDA), SWAT has been the 
core simulation tool for numerous U.S. national and international assessments of soil and water resources. 
The use of HAWQS over SWAT improves the ease of application to national scale analyses while still 
simulating a large array of watershed processes for a defined period of record. 

The HAWQS model follows a broad modeling sequence: (1) the landscape phase, where the primary 
processes are climate, soil water balance, nutrient and sediment transport and fate, land cover, plant 
growth, farm management, and (2) the main channel phase, where the main processes are river routing, 
and sediment and nutrient transport through the rivers and reservoirs.  

The HAWQS model projects changes in water quality parameters and simulated changes in river flow for 
five climate models under RCP8.5 and RCP4.5. These projections include future municipal wastewater 
treatment plant loadings (point source) scaled to account for population growth. Changes in overall water 
quality are estimated using changes in a Climate-oriented Water Quality Index (CWQI), a metric that 
combines multiple pollutant and water quality measures. Four water quality parameters (water 
temperature, dissolved oxygen, total nitrogen, and total phosphorus) are aggregated from the eight-digit 

UNDERLYING DATA SOURCES AND LITERATURE 

Fant, C., Srinivasan, R., Boehlert, B., Rennels, L., Chapra, S. C., Strzepek, K. 
M., Corona, J., Allen, A., & Martinich, J. (2017). Climate change impacts on 
US water quality using two models: HAWQS and US Basins. Water, 9(2), 
118. Doi:10.3390/w9020118 

Boehlert, B., Strzepek, K. M., Chapra, S. C., Fant, C., Gebretsadik, Y., Lickley, 
M., Swanson, R., McCluskey, A., Neumann, J., & Martinich, J. (2015). 
Climate change impacts and greenhouse gas mitigation effects on US water 
quality. Journal of Advances in Modeling Earth Systems, 7, 1326-1338. 
Doi:10.1002/2014MS000400 

Yen, H., Daggupati, P., White, M. J., Srinivasan, R., Gossel, A., Wells, D., & 
Arnold, J. G. (2016). Application of large-scale, multi-resolution watershed 
modeling framework using the hydrologic and water quality system 
(HAWQS). Water, 8(4), 164. Doi:10.3390/w8040164 
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HUC level to the Level-III Ecoregions, weighted by area.52 Finally, a relationship between changes in the 
CWQI and changes in the willingness to pay for improving water quality is used to estimate the economic 
implications of projected water quality changes. For more information on the approach and results for the 
water quality sector, please refer to Fant et al. (2017), Boehlert et al. (2015), and Yen et al. (2016). 
Specifically, impacts are estimated in the underlying study as per capita change in the willingness to pay to 
improve water quality for two future eras: 2050 (2040-2059) and 2090 (2080-2099).  

For illustrative purposes, Figure B-42 shows the resulting damages by degree of warming by GCM, 
calculated using 2010 (panel A) and 2090 (panel B) socioeconomics (i.e., the endpoints of the 
socioeconomic scenarios). 

FIGURE B-42. WATER QUALITY IMPACTS BY TEMPERATURE BIN DEGREE 

A. 2010 SOCIOECONOMICS   B.  2090 SOCIOECONOMICS 

    

 
Total impacts ($billions) by degree (°C) for two socioeconomic snapshots (2010 and 2090 using the default scenarios). The 
extrapolated portions of the impact function are shown with a dashed line. Note the figure scale varies by plot. 

Processing steps 

TABLE B-22. INCOMING DATA CHARACTIRISTICS: WATER QUALITY 

Data Features Water Quality Attributes 

Evaluated Impacts  • Willingness to pay for improved water quality (economic) 
Variant • No additional adaptation 
Data Shape • Era - 2050 (2040-2059) and 2090 (2080-2099) 

• Six GCMs (standard CIRA set) 
• EPA Level 3 Ecoregion 

Model Type • Simulation 

 
52 Designed to serve as a spatial framework for environmental resource management, ecoregions denote areas within 
which ecosystems (and the type, quality, and quantity of environmental resources) are generally similar. Ecoregions were 
originally created to support the development of regional biological criteria and water quality standards, and to set 
management goals for nonpoint source pollution. 
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Data Features Water Quality Attributes 

Runs Provided • With socioeconomic growth and with climate change 
Additional Data • State Level ICLUS Population 
Regions and States with Impacts • All CONUS regions and states 

Processing steps are shown in Figure B-43. The willingness to pay for each EPA Level 3 Ecoregion, GCM, and 
era combinations are from the underlying study. These climate change impacts are relative to a “control” 
scenario (one with socioeconomic growth and historical climate) to isolate the climate change impacts from 
the impacts of socioeconomic growth. In the first pre-processing step, these data are aggregated to the 
state level. Values are aggregated using a spatial weight, which represents a state’s contribution to the 
total area of an Ecoregion. Then, ICLUSv253 2050 and 2090 populations are used to calculate willingness to 
pay per capita.  Linear interpolation is then used to create an annual time series of values for each GCM and 
state combination for the period 1995-2099. Values are extrapolated for 2090-2099 using the linear trend 
observed between 2050 and 2090, and values for years prior to 2050 are estimated by using 1995 as a 
baseline year; i.e., impacts were assumed to be zero in 1995 and results are interpolated linearly between 
1995 and 2050. Finally, annual willingness to pay per capita rates are then binned by degree of CONUS 
temperature change for each GCM by averaging across the 11-year windows where each GCM reaches each 
integer degree of CONUS warming relative to the baseline.  

 
53 Bierwagen, B., Theobald, D.M., Pyke, A., Choate, A.P., Thomas, J.V., Morefield, P., 2010. 2010: National housing and 
impervious surface scenarios for integrated climate impact assessments. Proc. Natl. Acad. Sci. 107; EPA, 2017. Updates to 
the Demographic and Spatial Allocation Models to Produce Integrated Climate and Land Use Scenarios (Iclus) (Version 2) 



Technical Documentation for the Framework for Evaluating Damages and Impacts (FrEDI)  

                Page B-92 

FIGURE B-43. WATER QUALITY DATA PROCESSING FRAMEWORK 

 

When FrEDI is run, the pre-processed by-degree per capita willingness to pay functions are then applied to 
the input temperature scenario to calculate the unadjusted annual WTP per capita values based on the 
level of warming in each year of the input scenario. The total damages are then calculated by applying 
these annual per capita rates to the input population scenario.  

Limitations and Assumptions 

• Decreases in water quality due to climate change will likely have adverse effects on human health 
and the environment, not represented in this section's results. For example, climate change impacts 
to water quality may affect ecological dynamics of freshwater systems, with cascading effects on 
ecosystem services and recreational opportunities. 

• This analysis only considers four water quality parameters, and omits other constituents, such as 
sediment and heavy metals, that may be affected by changes in the climate system. 

• The methods underlying the analysis do not consider the effects of climate change-induced extreme 
events on water quality, such as increased siltation and runoff following wildfire events. 

• The analysis considers only a subset of all use/non-use values linked to water quality changes, 
therefore the damages reported here are likely underestimates of future impacts. 



Technical Documentation for the Framework for Evaluating Damages and Impacts (FrEDI)  

                Page B-93 

• By creating an annual time series for the period 1995 to 2100 based on values from 2050 and 2090 
only, the temperature binning processing does not capture any non-linearities in the relationship 
between damages and temperature, particularly in the early years of the century. 

• For further discussion of the limitations and assumptions in the underlying sectoral model, see Fant 
et al. (2017) and Boehlert et al. (2015). 

Winter Recreation 

Summary 

This sector estimates lost revenue due to climate 
change to suppliers of three types of winter 
recreation occurring at 247 sites across CONUS: 
alpine skiing, Nordic skiing, and snowmobiling.  

Damages are based on the number of visits to 
winter recreational sites, entrance fees, and state-
level average ticket prices. The model described in Wobus et al., (2017) was run using both 2010 and 2090 
ICLUSv2 population. For illustrative purposes, Figure B-44 shows the resulting damages by degree of 
warming for each recreation impact type by GCM, calculated using 2010 (panel A) and 2090 (panel B) 
socioeconomics (i.e., the endpoints of the socioeconomic scenarios).  

UNDERLYING DATA SOURCES AND LITERATURE 

Wobus, C., Small, E. E., Hosterman, H., Mills, D., Stein, J., 
Rissing, M., Jones, R., Duckworth, M., Hall, R., Kolian, M., 
Creason, J., & Martinich, J. (2017). Projected climate 
change impacts on skiing and snowmobiling: A case study 
of the United States. Global Environmental Change, 45, 
1-14. Doi:10.1016/j.gloenvcha.2017.04.006 
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FIGURE B-44. WINTER RECREATION IMPACTS BY TEMPERATURE BIN DEGREE 

A. 2010 SOCIOECONOMICS    B.   2090 SOCIOECONOMICS 

    

 
Total impacts ($billions) by degree (°C) for each impact type for two socioeconomic snapshots (2010 and 2090 using the 
default scenarios). The extrapolated portions of the impact function are shown with a dashed line. Note the figure scale 
varies by plot. 
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Processing steps 

TABLE B-23. INCOMING DATA CHARACTERISTICS: WINTER RECREATION 

Data Features Winter Recreation Attributes 

Evaluated Impacts  • Per capita cost of projected change in visits across models from baseline 
for three types of winter recreation activities: alpine skiing, Nordic skiing, 
and snowmobiling (economic) 

Variant • No additional adaptation 
Data Shape • Integer degree (1-6) 

• Six GCMs (standard CIRA set) 
• State level (Nordic skiing and snowmobiling)/National Ski Areas 

Association (NSAA) regions (alpine skiing) 
Model Type • Simulation 
Runs Provided • With 2010 population and with climate change 

• With 2090 population and with climate change 
Additional Data • Average NSAA region ticket price 

• Average per person forest rec entry fee 
Regions and States with Impacts • Midwest (excluding IA, MO, OH) 

• Northeast (excluding DE, DC) 
• Northern Plains (excluding NE, ND) 
• Northwest 
• Southeast (excluding AL, AR, FL, GA, KY, LA, MS, NC, SC, TN) 
• Southwest 

Processing steps are shown in Figure B-45. Lost visitation days are available from Wobus et al. (2017) by 
degree across recreational activities (alpine skiing, Nordic skiing, and snowmobiling), GCMs, and state, for 
both a 2010 and 2090 population. Climate impacts are already isolated from these data. Alpine skiing 
results are presented at the National Ski Areas Association (NSAA) state level, which include some states 
clustered in groupings of two to three states. For these groupings comprised of multiple states, lost future 
visits (and associated economic impacts) are attributed to states proportionally with baseline season-ski 
area days (i.e. the average length of the alpine ski season in the state multiplied by the number of ski areas 
in the state).54    

In the last pre-processing step, both the 2010 and 2090 state estimates are divided by state population to 
develop per capita estimates of forgone ticket sales for the three winter activities by degree of warming. 

 
54 One NSAA grouping made up of Rhode Island and Connecticut does not have available data on baseline season-ski area 
days by state. Therefore, for this cluster, losses are distributed between the two states based on population, specifically the 
ICLUS 2015 population. 
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FIGURE B-45. WINTER RECREATION DATA PROCESSING FRAMEWORK 

 

When FrEDI is run, the pre-processed by-degree per damage functions are then applied to the input 
temperature scenario to calculate the total annual lost revenue by state, GCM, and impact year.  

Limitations and Assumptions 

• The scope of winter recreation loss for the tool is derived only from analysis of the alpine skiing, 
Nordic skiing, and snowmobile sub-sectors of the industry. Potential losses to other winter 
recreation activities (e.g., tubing) are not quantified in this study. 

• Potentially compensating adaptations from the lost opportunity to engage in winter recreation (for 
example, with other forms of outdoor recreation, or with indoor recreation) are not considered.  

• For further discussion of the limitations and assumptions in the underlying sectoral model, see 
Wobus et al. (2017) and U.S.EPA’s 2017 Multi-Model Framework for Quantitative Sectoral Impacts 
Analysis. 
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Marine Fisheries 

Summary 

This analysis estimates climate-
driven changes in thermally 
available habitat for economically 
important commercial fish species 
in the CONUS based on methods 
described in Morley et al., (2018), 
and connects changes in fish species population with projected landings, valued using current ex vessel 
prices55 for individual species. The analysis first characterizes the potential economic impact of projected 
changes in the annual landings56 of 177 commercially harvested marine species from 2021 to 2100, based 
on the use of five general circulation models (GCMs) to project changes in each target species’ thermally 
available habitat within the U.S. Exclusive Economic Zone (EEZ). The Moore et al. (2021) paper from which 
these economic damage estimates are derived from then also includes estimates of the future welfare 
losses associated with changes in landings for a 16-fishery subset of fish species reflected in the estimates 
presented here, accounting for about 56 percent of current U.S. commercial fishing revenues. We omit 
consideration of the welfare estimates because they are incomplete, and instead focus on the broader 
“screening analysis” results from the paper.57 The screening analysis assumes constant prices through the 
21st century, however, a key limitation discussed further below. The constant price assumption means that 
there is no socioeconomic adjustment for this sector.  

For illustrative purposes, Figure B-46 shows the resulting damages by degree by GCM. 

 
55 ‘Ex vessel prices’ are the prices catches are sold at when they first enter the supply chain (i.e. sale price received by 
anglers).  
56 ‘Landings’ refer to the value of all catch brought ashore.  
57 As noted in the paper, to ensure welfare assessment would be analytically tractable, the authors limited its scope to 16 
species that could be equally divided into four categories, each of which would contain commodities that the consumers 
might consider close substitutes.  Given the limited number of species the analysis could consider, the authors also chose to 
focus, to the extent possible, on fisheries that account for the greatest share of current ex-vessel landings. While the 
welfare analysis provides additional insights about the potential for market adaptation to mitigate damages through 
seafood consumers substituting away from fish species that might be most affected by climate change, the welfare analysis 
unavoidably must examine only a subset of fisheries examined in the more comprehensive screening analysis. 

UNDERLYING DATA SOURCES AND LITERATURE 

Moore, C, Morley, J.W., Morrison, B., Kolian, M., Horsch, E., Frölicher, T., 
Pinsky, M.L., & Griffis, R. (2021). Estimating the Economic Impacts of Climate 
Change on 16 Major US Fisheries.  Climate Change Economics, 12(1), 
2150002. DOI: 10.1142/S2010007821500020 

Morley, J.W., Selden, R.L., Latour, R.J., Frölicher, T.L., Seagraves R.J., & Pinsky 
M.L. (2018). Projecting shifts in thermal habitat for 686 species on the North 
American continental shelf. PLoS ONE, 13(5), e0196127. 
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FIGURE B-46. MARINE FISHERIES IMPACTS BY TEMPERATURE BIN DEGREE 

  

 
Total impacts ($millions) by degree (°C), which do not vary by socioeconomic scenario or time. The extrapolated portions of 
the impact function are shown with a dashed line.  

Processing steps 

TABLE B-24. INCOMING DATA CHARACTERISTICS: MARINE FISHERIES 

Data Features Marine Fisheries Attributes 

Evaluated Impacts  • Decrease in revenue relative to baseline (economic) 
Variants • No additional adaptation 
Data Shape • Yearly (2006-2099) 

• Six GCMs (standard CIRA set) 
• State level 

Model Type • Simulation 
Runs Provided • Without socioeconomic growth and with climate change 

• Without socioeconomic growth and without climate change (baseline) 
Additional Data • None 
Regions and States with Impacts • Northeast (excluding DC, PA, VT, WV) 

• Northwest (excluding ID) 
• Southeast (excluding AR, KY, TN) 
• Southern Plains (excluding KW, OK) 
• Southwest (excluding AZ, CO, NV, NM, UT) 

Processing steps are seen in Figure B-47. Annual marine fishery revenue data were obtained from the 
Moore et al. (2021) study authors, by GCM and state. In the first pre-processing step, the baseline 
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estimates are subtracted from the by year revenue data to isolate climate impacts. Results are then binned 
by degree of CONUS temperature change for each GCM by averaging across the 11-year windows where 
each GCM reaches each integer degree of CONUS warming relative to the baseline. Because the original 
study used a later period baseline (2006-2017), results from four of the five GCM trajectories do not have 
data for the one-degree warming bin. One degree bin results are therefore generated by interpolating 
results between the baseline (zero degree) and the two-degree bin for these four GCMs. 

FIGURE B-47. MARINE FISHERIES DATA PROCESSING FRAMEWORK 

 
When FrEDI is run, the pre-processed by-degree lost revenue damage functions are then applied to the 
input temperature scenario to calculate the annual total lost revenue from marine fisheries, by GCM and 
state.  

Limitations and Assumptions 

• While the underlying study includes impacts for Southern Alaska fisheries, the analysis incorporated 
in FrEDI is limited to CONUS fisheries. In the 2007-2016 period, Alaska accounted for approximately 
one third of revenue from all fisheries, and almost 45% of the revenues from fisheries with habitat 
projections. The paper estimates that under RCP 8.5 climate change would reduce the annual value 
of ex vessel revenues by about 1.7% from baseline. These declines from baseline for Alaska fisheries 
are omitted from the FrEDI data, which does not include Alaska in the spatial domain. 

• As noted above, the Moore et al. (2021) study includes a welfare analysis at national scale, for a 
subset of species. The results of the welfare analysis reflect both market adaptation though 
substitution effects, and changes in prices. The latter effect, which is characterized by large 
increases in ex vessel prices through the 21st century, appears to be a strong influence on the 
welfare estimates. Compared to the direct impacts in the screening analysis results, where prices 
are held constant, the welfare analysis yields results for the present value of damages that are two 
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to three times larger, suggesting that the direct impact results incorporated in FrEDI are 
conservative. 

• The Moore et al. (2021) and Morley et al. (2018) analyses exclude many factors that may influence 
species abundance and commercial landings, such as potential changes in primary productivity, 
species interactions, population dynamics, or fisheries management. In addition, because the 
approach focuses on potential changes in the landings of species that are already commercially 
harvested, it does not account for the possibility that an increase in the abundance of other species 
could lead to the development of new fisheries. This type of development would help to offset 
potential losses in economic welfare attributable to a decline in the productivity of established 
fisheries. 

• The species for which habitat projections are available account for nearly 80% of the average 
annual ex-vessel revenues on the East Coast. Coverage is somewhat lower in the other three 
regions, where the species for which habitat projections are available account for between 63% and 
68% of the average annual revenue. These factors likely lead to underestimate of the total impact 
of climate change on fisheries. 

• For further discussion of the limitations and assumptions in the underlying sectoral model, see 
Moore et al. (2021). 
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B.6 Labor Sector  

Labor 

Summary 

The labor sector addresses economic 
damages from changes in total labor hours in 
the CONUS due to climate change. The 
analysis estimates changes in labor allocation, 
with both positive and negative responses in 
hours worked in weather-exposed industries (e.g., agriculture, construction, manufacturing). The study 
finds the relationship between temperature and hours worked is not significant during recession periods, 
and therefore projected losses are adjusted to account for the probability of recession. Damages are based 
on a physical measure of average hours worked by workers in high-risk industries, which is monetized in 
Neidell et al. (2021) by average wages across at-risk industries.58 For illustrative purposes, Figure B-48 
shows the resulting damages by degree of warming by GCM, calculated using 2010 (panel A) and 2090 
(panel B) socioeconomics (i.e., the endpoints of the socioeconomic scenarios). 

FIGURE B-48. LABOR IMPACTS BY TEMPERATURE BIN DEGREE 
A. 2010 SOCIOECONOMICS     B. 2090 SOCIOECONOMICS 

   

 
Total impacts ($billions) by degree (°C) for two socioeconomic snapshots (2010 and 2090 using the default scenarios). The 
extrapolated portions of the impact function are shown with a dashed line. Note the figure scale varies by plot. 

 
58 Hourly wages are based on average wages across at-risk industries: agriculture, forestry, fishing, hunting, mining, 
construction, and manufacturing.    

UNDERLYING DATA SOURCES AND LITERATURE 

Neidell, M., Graff-Zivin, J., Sheahan, M., Willwerth, J., Fant, C., 
Sarofim, M., & Martinich, J. (2021). Temperature and work: Time 
allocated to work under varying climate and labor market 
conditions. PLoS ONE 16(8): e0254224. 
https://doi.org/10.1371/journal.pone.0254224 

 

https://doi.org/10.1371/journal.pone.0254224
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Processing steps 

TABLE B-25. INCOMING DATA CHARACTERISTICS: LABOR 

Data Features Labor Attributes 

Evaluated Impacts • Lost hours among high-risk workers (physical) 
• Value of lost wages among high-risk workers (economic) 

Variants • No additional adaptation 
Data Shape • Annual 

• Six GCMs (standard CIRA set) 
• State level 

Model Type • Empirical 
Runs Provided • With climate change 
Additional Data • High-risk worker population 

• High-risk worker wage rate 
Regions and States with Impacts • All CONUS regions and states 

Processing steps are shown in Figure B-49. Forgone labor hours for each year, GCM, and state are provided 
by the Neidell et al. (2021) study authors. These results already account for baseline hours lost, so no 
additional pre-processing is needed to isolate climate impacts. The next step divides these estimates by 
high-risk worker population to calculate lost hours per high-risk worker estimates. The population of high-
risk workers varies by state but is assumed to remain constant over the century. Lastly, state-level lost 
hours per high-risk worker are binned by degree of CONUS temperature change for each GCM by averaging 
across the 11-year windows where each GCM reaches each integer degree of CONUS warming relative to 
the baseline. 
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FIGURE B-49. LABOR DATA PROCESSING FRAMEWORK 

 

When FrEDI is run, the pre-processed by-degree lost hours per high-risk worker functions are then applied 
to the input temperature scenario to calculate the unadjusted annual hours lost per high-risk worker based 
on the level of warming in each year of the input scenario. The total labor hours lost are then calculated by 
applying these annual rates to the number of high-risk workers in each state. Lastly, lost hours are 
monetized by multiplying the total annual hours lost by an average wage rate from the Bureau of Labor 
Statistics,59 as is done in Neidell et al. (2021), inflated from 2010 values proportionally to GDP per capita 
growth. Therefore, the physical hours lost will not scale with changes in user-input population, but the 
monetized impacts will scale with wage rate, which is a function of user-input GDP per capita. 

 
59 U.S. Bureau of Labor Statistics. 2009. Table 2. Private industry by six-digit NAICS industry and government by level of 
government, 2009 annual averages: Establishments, employment, and wages, change from 2008. Available at: 
https://www.bls.gov/cew/publications/employment-and-wages-annual-averages/2009/tables/private-industry-by-six-digit-
naics-and-government-by-level-of-government.pdf  

https://www.bls.gov/cew/publications/employment-and-wages-annual-averages/2009/tables/private-industry-by-six-digit-naics-and-government-by-level-of-government.pdf
https://www.bls.gov/cew/publications/employment-and-wages-annual-averages/2009/tables/private-industry-by-six-digit-naics-and-government-by-level-of-government.pdf
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Limitations and Assumptions 

• High-risk worker population is assumed to remain constant over the century. As discussed further in 
Neidell et al. (2021): “Information on the number of high-risk workers at the county level comes from 
the American Community Survey centered around 2010 (2008–2012 five-year estimates). We assume 
the number of high-risk workers will remain constant over time. This is because trends from the recent 
past, as well as near-term projections, suggest that while some industries defined as high-risk will 
reduce the number of workers they support, including agriculture and mining, and others have or will 
experience slight increases; on net the absolute number of high-risk workers has and is expected to 
remain roughly constant at least through 2029.” 

• This analysis does not evaluate the potential for new adaptations (behavioral or technological) by 
workers or employers to mitigate the effects of extreme temperatures on labor allocation. Adaptations 
present in the baseline period upon which the econometric analysis is based are assumed to be part of 
the modeled response to future temperature changes, however, new adaptation behaviors or 
technology are not evaluated. 

• The labor loss estimates presented in FrEDI are limited to impacts on the number of hours worked. 
Other effects such as temperature-driven reductions in productivity per hour worked and increases in 
morbidity due to workplace injury are not included in these estimates. Recent research in California 
suggests that the morbidity impacts of temperature-related workplace injuries could be significant.60 
Work-related heat mortality is captured in the temperature-related mortality estimates in other 
sectors in FrEDI. 

• For further discussion of the limitations and assumptions in the underlying sectoral model see Neidell 
et al. (2021). 

  

 
60 See Park, R. J., Pankratz, N., Behrer, A.P. (2021). Temperature, Workplace Safety, and Labor Market Inequality. IZA 
Discussion Paper No. 14560. 
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B.7 Agriculture Sector  

CIL Agriculture 

Summary 

This sector addresses the impact of 
climate change on agricultural yields 
of key crops across all of CONUS. The 
Climate Impact Lab (CIL) Agriculture 
projections are drawn from functions 
estimating the effects of changes in 
temperature, precipitation, and CO2 
fertilization on yields of cotton, maize, 
soybean, and wheat. Temperature and 
precipitation response functions for 
wheat are based on research from 
Hsiang, Lobell, Roberts, and Schlenker 
(2013), and functions for cotton, 
maize, and soybean are drawn from 
Schlenker and Roberts (2009). CO2 
fertilization response functions for all 
four crops are based on estimates from McGrath and Lobell (2013).61 Hsiang et al. (2017) use these 
functions to project future impacts on yields by GCM and RCP through the 21st century. Economic damages 
are based on changes from regional baseline production value averaged over 1990-2000 drawn from the 
USDA National Agricultural Statistics Service’s (NASS) Quick Stats database. The currently available results 
include adaptation strategies only to the extent that they have been previously implemented in the study 
area. We anticipate that future revisions of FrEDI may incorporate a “with adaptation” variant that includes 
modelling of future adaptation behaviors and technologies specifically for maize. For illustrative purposes, 
Figure B-50 shows the resulting damages by degree of warming for each impact type and for both variants 
(left and right plots), by GCM. 

 
61 Readers should note that the online version of McGrath and Lobell (2013) includes a link to Rosenthal and Tomeo (2013) 
and implies that Rosenthal and Tomeo “corrects” McGrath and Lobell. In fact Rosenthal and Tomeo is a complementary 
Perspective (commentary) article to McGrath and Lobell, and does not provide any correction of results or any results 
whatsoever.  

UNDERLYING DATA SOURCES AND LITERATURE 

Hsiang, S., Kopp, R., Jina, A., Rising, J., Delgado, M., Mohan, S., Rasmussen, 
D.J., Muir-Wood, R., Wilson, P., Oppenheimer, M., Larsen, K., and Houser T. 
(2017). Estimating economic damage from climate change in the United 
States, Science, 356, 1362–1369. 

Hsiang, S., Lobell, D., Roberts, M., and Schlenker, W. (2013). Climate and 
Crop Yields in Australia, Brazil, China, Europe and the United States. 
Available at SSRN: https://ssrn.com/abstract=2977571 or 
https://doi.org/10.2139/ssrn.2977571. 

McGrath, J.M. and Lobell, D.B. (2013). ‘Regional disparities in the CO2 
fertilization effect and implications for crop yields’, Environ. Res. Lett., 8, 
014054. 

Schlenker, W. and Roberts, M.J. (2009). ‘Nonlinear temperature effects 
indicate severe damages to U.S. crop yields under climate change’, Proc. 
Natl. Acad. Sci. U.S.A., 106, 15594–15598. 

     

 

https://ssrn.com/abstract=2977571
https://doi.org/10.2139/ssrn.2977571
https://quickstats.nass.usda.gov/
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FIGURE B-50. CIL AGRICULTURE IMPACTS BY TEMPERATURE BIN DEGREE 

 

 
Total impacts ($billions) by degree (°C) for each impact type and variant. The extrapolated portions of the impact function 
are shown with a dashed line. Note the figure scale varies by plot. 
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Processing steps 

TABLE B-26. INCOMING DATA CHARACTERISTICS: CIL AGRICULTURE 

Data Features CIL Agriculture Attributes 

Evaluated Impacts • Lost production value (economic) 
Variants • With CO2 Fertilization 

• Without CO2 Fertilization 
Data Shape • Annual 

• Two variants 
• Four impact types 
• Six GCMs (standard CIRA set) 
• State level 

Model Type • Empirical 
Runs Provided • With climate change 
Additional Data • Baseline production values 
Regions and States with Impacts • Midwest 

• Northeast (excluding CT, DC, ME, MA, NH, RI, VT) 
• Northern Plains 
• Northwest 
• Southeast 
• Southern Plains 
• Southwest 

Processing steps are shown in Figure B-51. The Hsiang et al. (2017) study authors provided the percent 
change in yields relative to baseline for each crop under RCP8.5, by GCM, year, and state for the 2001-2099 
period. The authors provided a distribution of results, but this version of FrEDI uses only the median 
estimates. In the first pre-processing step, the annual yield changes are binned by degree of CONUS 
temperature change for each GCM.62 In the second and final processing step, state-level percent changes in 
yield by degree are scaled by state-level baseline production values from USDA NASS to give economic 
damage estimates. 

 
62Agricultural yields are impacted by a wider set of climate variables than temperature, such as precipitation patterns, 
which are implicitly captured in the annual results from the underlying studies, and used in the temperature binning 
approach to create sectoral damage functions indexed to CONUS warming levels. See Appendix C for more discussion of 
non-temperature climate variables. 



Technical Documentation for the Framework for Evaluating Damages and Impacts (FrEDI)  

                Page B-108 

FIGURE B-51. CIL AGRICULTURE DATA PROCESSING FRAMEWORK 

 

When FrEDI is run, the pre-processed by-degree percent changes in production value functions are then 
applied to the input temperature scenario to calculate the annual percent changes in production value 
based on the level of warming in each year of the input scenario. 

Limitations and Assumptions 

• The economic impacts presented are directly proportional to the underlying physical impacts and 
do not incorporate market effects on price due to projected changes in supply. For this reason, we 
may underestimate future impacts. Work by Beach et al. (2015)63 suggests that climate change may 
cause increases in crop prices overall, which supports the conclusion that we underestimate 
impacts. 

• This study takes incomplete account of the impact of future potential changes in crop technology, 
energy and land use policies, and other interactions that could affect market outcomes. For the 

 
63 Beach, R., Y. Cai, A. Thomson, X. Zhang, R. Jones, B. McCarl, A. Crimmins, J. Martinich, J. Cole, and B. Boehlert, 2015: 
Climate change impacts on US agriculture and forestry: benefits of global climate stabilization. Environmental Research 
Letters, 10, doi: 10.1088/1748-9326/10/9/095004.   
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most part, these important factors affecting agricultural yield are not directly tied to changes in 
climate but could be components of an adaptative response as climate change unfolds. 

• The underlying study also omits some important aspects of climate change impacts to agriculture 
not directly tied to yield effects, including damages from extreme weather events, wildfire, and 
changes in weeds, pests, disease, and ozone damage. Collectively, these effects would likely result 
in larger yield losses than those estimated here. 

• For further discussion of the limitations and assumptions in the underlying sectoral model, please 
see Hsiang et al. (2017).



Technical Documentation for the Framework for Evaluating Damages and Impacts (FrEDI)  

       Page C-1 

C. APPENDIX C | IMPACTS-BY-DEGREE AND TEMPERATURE BINNING 
METHODOLOGY 

This appendix provides additional detail on the impacts-by-degree and temperature binning approaches 
that form the basis of the FrEDI framework. An ‘impacts-by-degree' approach quantifies climate-related 
impacts as a function of future warming. By providing impact estimates for a given amount of warming, 
regardless of when the warming occurred or which climate model or scenario was used to develop the 
estimate, the ‘by-degree’ approach allows for increased comparability between independent climate 
impact studies and flexibility to facilitate custom scenario analysis. This complements more traditional 
scenario-based approaches, which instead quantify future climate change impacts associated with a specific 
set of emissions or concentration scenarios. The impacts-by-degree approach has been widely used in 
previous scientific assessments for quantifying and communicating impacts at distinct levels of warming, 
including by the National Research Council (NRC) Climate Stabilization Targets assessment64, IPCC 1.5 
degree assessment65, and 5th U.S. National Climate Assessment66 .  

In FrEDI, by-degree damage functions are used to relate sectoral impacts to integer degrees of warming at 
the CONUS level. Average CONUS warming (as compared to average warming at the global level) was 
chosen, because domestic impacts will be more directly related to local temperatures. While average 
CONUS warming is used as the climate-driver within FrEDI, the impacts data from the underlying studies 
are associated with a much richer set of climate variables and greater spatial variation. Therefore, while 
each damage function is indexed to specific degrees of CONUS warming, the total impacts to each sector 
will also account for changes in precipitation, extreme heat days, freeze/thaw patterns, temperature 
patterns, and other climate variables present in and specific to the GCMs used in each sectoral impact 
study. As an example of these patterns, Figure C-1 shows the spatial variation in annual average 
temperature (panel A) and percent change in precipitation (panel B) at 2° C of CONUS warming relative to 
the 1986-2005 FrEDI baseline across the six GCMs used in many of the underlying studies. The limitation of 
this approach is that these patterns in climate variables, such as precipitation intensity, frequency, and 
location of events or variations in daily and hourly temperatures, and how they relate to average CONUS 
warming are specific to each GCM. This could have implications for the resulting sectoral impacts if the user 
provides input data derived from a scenario or from a GCM that has, for example, a different distribution of 

 
64 National Research Council (2011) Climate stabilization targets: emissions, concentrations, and impacts over decades to 
millennia. The National Academies Press, Washington, DC. https://doi.org/10.17226/12877 
65 IPCC (2018) Summary for policymakers. In: Masson-Delmotte V, Zhai P, Pörtner H-O, Roberts D, Skea J, Shukla PR, Pirani 
A, Moufouma-Okia W, Péan C, Pidcock R, Connors S, Matthews JBR, Chen Y, Zhou X, Gomis MI, Lonnoy E, Maycock T, Tignor 
M, Waterfield T (eds) Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-
industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response 
to the threat of climate change, sustainable development, and efforts to eradicate poverty. World Meteorological 
Organization, Geneva, Switzerland, p 32 
66 USGCRP, 2023: Fifth National Climate Assessment. Crimmins, A.R., C.W. Avery, D.R. Easterling, K.E. Kunkel, B.C. Stewart, 
and T.K. Maycock, Eds. U.S. Global Change Research Program, Washington, DC, USA. 
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precipitation across states or a different distribution of extreme high and low temperature days than any of 
the GCMs that were considered in the underlying studies.  

FIGURE C-1. GRIDDED TEMPERATURE AND PRECIPITATION PATTERNS AT TWO DEGREES OF WARMING 
A. DIFFERENCE IN TEMPERATURE (°C) AT 2 DEGREES OF CONUS WARMING 

 
B. PERCENT DIFFERENCE IN TOTAL PRECIPITATION FROM THE CONUS AVERAGE AT 2 DEGREES OF 

CONUS WARMING 

 
Maps of the spatial patterns of climate changes at 2°C of warming. The upper six maps show the difference between a 
homogeneous 2°C CONUS temperature change and the actual mean temperature change projected by the six models used 
across a number of underlying sectoral impact models in the 11-year temperature bin at 1/16th degree. The lower six maps 
show the percentage change in precipitation during the 11-year binning window relative to the historical period (1986–
2005) for the six models. Seasonal patterns may differ from the 11-year mean. 

To develop these types of damage functions, ‘Temperature Binning’ is the process of translating annual 
climate change and impact data into an impacts-by-degree framework (Sarofim et al., 2021).67 In this 
Documentation, ‘temperature binning’ specifically refers to the process of averaging projections of annual 
sectoral impact data from each of the underlying studies across the time period where each of the GCMs 

 
67 Sarofim, M. C., Martinich, J., Neumann, J. E., Willwerth, J., Kerrich, Z., Kolian, M., ... & Hartin, C. (2021). A temperature 
binning approach for multi-sector climate impact analysis. Climatic change, 165(1), 22. 
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used in the underlying studies reach integer degrees of CONUS warming relative to the baseline. The main 
purpose of using a binning window rather than a single year is to smooth out interannual variability. This 
approach is similar to the time-shift approach of Tebaldi et al. (2020) and the time-slice approach of 
Schleussner et al. (2016).68  

In FrEDI, an 11-year window is selected for each temperature ’bin’ or ‘era’ as a way to balance between 
smoothing out interannual variability in the climate projections and keeping the windows small enough 
that all years within the window are representative of each degree of warming (see sensitivity analysis 
below). Shorter windows have increased noise from year-to-year temperature variability, however, longer 
windows, such as 30-year periods that are often used to establish a climatology, would cause 
inconsistencies near the end or the beginning of the timeseries. For example, the first degree of warming is 
often within the first 10 years of the projection and could not be captured with a 30-year window. In 
addition, since the average impacts across all years in the defined window are attributed to the integer 
degree of warming, the longer the window, the larger the potential difference between the impacts across 
these years. Therefore, a window that is too large could also cause a bias in the average impact assigned to 
the degree of warming if the impacts don’t scale linearly with temperature in the underlying data. An 11-
year window is chosen to keep the window relatively tight to minimize these potential impacts, while also 
smoothing out interannual variability. As an illustration of these temperature ‘bins’, Figure C-2 shows an 
example of the 11-year window (and the central ‘arrival’ year) where different GCM’s reach 1 to 6° C of 
CONUS warming under RCP8.5. The models shown are the 6 GCMs from the 5th Coupled Model 
Intercomparison Project (CMIP) that are used in many of FrEDI's underlying sectoral impact studies. For 
example, the GFDL-CM3 model is projected to reach 2° C of CONUS warming between 2027 and 2037 
(centered on 2032) and 6° C between 2082 and 2092 (centered on 2087). In contrast, the GISS-E2-R model 
is only projected to reach 3° C of warming before 2090.  

FIGURE C-2. INTEGER DEGREE ARRIVAL WINDOWS AND YEARS FOR SIX CMIP5 GCMS 

 
Illustration of arrival windows of each integer CONUS degree of warming for RCP8.5 in six GCMs. Arrival years, or the year at 
which the 11-year moving average reaches the given integer, are listed in each bin. The six CMIP5 GCMs are the suite used in 
the CIRA project, which represent many of the studies included within FrEDI. Figure reproduced from Sarofim et al., 2021.  

 
68 Tebaldi, C., Armbruster, A., Engler, H. P., & Link, R. (2020). Emulating climate extreme indices. Environmental Research 
Letters, 15(7), 074006 and Schleussner, C. F., Lissner, T. K., Fischer, E. M., Wohland, J., Perrette, M., Golly, A., ... & Schaeffer, 
M. (2016). Differential climate impacts for policy-relevant limits to global warming: the case of 1.5 C and 2 C. Earth system 
dynamics, 7(2), 327-351. 
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As an additional example, Figure C-3 shows a time series of these same arrival times as an 11-year moving 
average of the CONUS temperature change relative to the 1986-2005 baseline.  

FIGURE C-3. CONUS DEGREES OF WARMING WITH 11-YEAR MOVING AVERAGE 

 
Annual degrees of warming (Celsius) from 1986-2005 average baseline for CONUS after an 11-year moving average is 
applied. All six CIRA GCMs are shown. 

To investigate the sensitivity of the arrival year to the choice of an 11-year moving average as opposed to a 
shorter or longer period, the following tables indicate how the arrival years would differ for a 5-year 
window (Table C-1) or a 15-year window (Table C-2). As shown, in most cases, arrival years only differ by 
one to three years and differences are greater for the 5-year window than the 15-year window. 

TABLE C-1. DIFFERENCE IN ARRIVAL TIMES FOR A 5-YEAR WINDOW  

Differences between arrival times (years) if a 5-year window is used compared to an 11-year window. 

GCM 

Difference between arrival times for a 5-year window (years) 

1 Deg 2 Deg 3 Deg 4 Deg 5 Deg 6 Deg 

CanESM2 2 1 0 3 1 1 

CCSM4 2 1 3 2 1 N/A 

GISS-E2-R 3 1 3 N/A N/A N/A 

HadGEM2-ES 1 3 1 1 0 1 

MIROC5 3 3 1 0 0 0 

GFDL-CM3 1 3 0 1 3 1 
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TABLE C-2. DIFFERENCE IN ARRIVAL TIMES FOR A 15-YEAR WINDOW  

Differences between arrival times (years) if a 15-year window is used compared to an 11-year window. 

GCM 

Difference between arrival times for a 15-year window (years) 

1 Deg 2 Deg 3 Deg 4 Deg 5 Deg 6 Deg 

CanESM2 2 2 1 2 1 0 

CCSM4 2 0 1 0 0 N/A 

GISS-E2-R 1 0 0 N/A N/A N/A 

HadGEM2-ES 0 0 0 0 1 0 

MIROC5 2 0 0 1 0 N/A 

GFDL-CM3 0 0 0 0 2 1 

In FrEDI, as described in Appendix B, temperature binning is applied in the pre-processing stages of the 
FrEDI framework (i.e., listed as ‘Bin Results by Temperature’ in Appendix B flow diagrams) to derive the 
GCM and state-specific ‘by-degree’ damage functions from the time series of impact data from each 
underlying sectoral study, by determining the average impacts (from each GCM and in each state) that are 
associated with the arrival window where the GCMs used in the underlying study reaches each integer 
degree of CONUS warming (via an 11-year moving average). The adopted method in this framework is to 
calculate impacts from each available sector and GCM-specific damage function and calculate the average 
impacts across GCMs during post-processing. If users are instead interested in results from a subset of 
GCMs with specific climate patterns or warming level, users could alternatively select FrEDI results based 
on that subset of GCMs. For example, if there is interest in the implications of a relatively wet future, an 
analysis using the CMIP5 CanESM2 GCM, the wettest of the ensemble, could provide insights. 

Additional background on the temperature binning methodology can be found in Sarofim et al. (2021). 

C.1 Sensitivity to GHG emissions scenarios 
Related to the discussion above, patterns of climate variables (such as temperature and precipitation) and 
non-climate stressors are implicitly accounted for in the by-degree CONUS damage functions. However, 
these patterns vary by GCM, and may also vary across different climate scenarios (e.g., RCPs or SSPs). As 
the underlying studies used to derive damage functions within FrEDI are typically based on results from a 
small number of GHG emission scenarios, it is important to understand the sensitivity of the total impacts 
to this process of calibrating the damage function to a single scenario—i.e., would the impacts at each 
degree of warming be significantly different if derived from two different GHG emissions scenarios? For 
example, there could be potential bias in the damage function calibration approach because of the land-sea 
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warming differences between higher and lower GHG scenarios or other potential differences (Herger et al. 
2015).69 

To test this sensitivity of the damage function calibration to different GHG emission scenarios, the 
remainder of this section presents data derived from the RCP8.5 scenario compared to data derived from 
the RCP4.5 scenario, which is a lower emissions alternative to RCP8.5.  

TABLE C-3. ARRIVAL YEARS OF CONUS INTEGERS OF WARMING, BY GCM AND GHG EMISSIONS SCENARIO 

Arrival years (i.e. the year in which the 11-year average CONUS temperature reaches integers of warming compared to the 
1986-2005 baseline period) through 2100. Note that 2095 is the last possible arrival year this century to account for 11-year 
average window (2090-2100). 

  Degrees of Warming (°C, CONUS) 
 GCM RCP  1 2 3 4 5 6 

CanESM2 
4.5 2013 2029 2067 - - - 
8.5 2011 2033 2048 2062 2076 2091 

CCSM4 
4.5 2046 - - - - - 
8.5 2011 2037 2059 2077 2091 - 

GISS-E2-R 
4.5 2038 - - - - - 
8.5 2026 2052 2082 - - - 

HadGEM2-ES 
4.5 2015 2037 2052 - - - 
8.5 2013 2029 2044 2055 2064 2077 

MIROC5 
4.5 2012 2037 2079 - - - 
8.5 2017 2033 2050 2067 2081 - 

GFDL-CM3 
4.5 2017 2029 2055 - - - 
8.5 2013 2032 2049 2061 2071 2087 

To test the overall sensitivity to differences in arrival years, as well as the potential differences in GCM-
specific climate stressors between the two RCP scenarios, Figure C-4 and Figure C-5 show the by-degree 
damage functions by GCM and RCP for the FrEDI Labor and Roads sectors. These specific sectors were 
chosen because the original underlying studies included impact results associated with both the RCP4.5 and 
RCP8.5 scenarios. These sectors also cover a broad range of underlying damage mechanisms. For example, 
the impacts in the Labor sector are laregly driven by changes in temeprature, while the impacts in the 
Roads sector are impliclty related to both temeprature and precipitation changes. This comparison is run 
through 3 degrees of warming, which is the maximum level of warming reached this century in RCP4.5. 
These figures show that while there is some variation between the functions within this temperature range, 
there is no clear directional bias that would suggest that damage functions derived from annual impact 
data based on the RCP8.5 scenario would systematically result in higher (or lower) impacts than based on 
RCP4.5 data. For example, the GCM-averaged RCP4.5-based damage function is larger than the RCP8.5-
based function through 2° C of warming for Labor, as well as above temperatures of 2.6° C for Roads (no 

 
69 See Herger, N., B. M. Sanderson, and R. Knutti (2015), Improved pattern scaling approaches for the use in climate impact 
studies, Geophys. Res. Lett., 42, 3486–3494, doi:10.1002/2015GL063569 
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additional adaptation variant). In addition, the magnitude of variation across GCMs for each RCP is larger 
than the variation across RCPs for each GCM, indicating that in the range of temperature where warming 
levels overlap (i.e., 0-3° C), the process of deriving impact-by-degree damage functions using a temperature 
binning approach is robust to the GHG emissions scenario used in the underlying study. This result is 
generally consistent with previous external studies that also found the sensitivity to GHG emission 
scenarios is lower than other sources of uncertainty. For example Tibaldi et al., 2020 showed that the 
“time-shift” approach (similar to temperature binning) had emulation errors smaller than the natural 
variability of the models across many key metrics.70  

FIGURE C-4. LABOR SECTOR IMPACT BY DEGREE FUNCTION COMPARISON: RCP8.5 VS. RCP4.5 

 
Impacts by degree functions for the Labor sector using results generated in the underlying study under RCP4.5 (red) vs 
RCP8.5 (blue), for six GCMs. GCM averages represented by solid lines. 

 

 
70 Tebaldi, C., Armbruster, A., Engler, H. P., & Link, R. (2020). Emulating climate extreme indices. Environmental Research 
Letters, 15(7), 074006. 
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FIGURE C-5. ROADS SECTOR IMPACT BY DEGREE FUNCTION COMPARISON: RCP8.5 VS RCP4.5 

 
Impacts by degree functions for the Roads sector using results generated in the underlying study under RCP4.5 (red) vs 
RCP8.5 (blue), for six GCMs. GCM averages represented by solid lines. 
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D. APPENDIX D | METHODS DETAILS 

D.1 Global to CONUS Temperature Translation 
FrEDI was designed with the flexibility to generate impact estimates from either global or CONUS 
temperature input data. To accomplish this, FrEDI contains a translation function, derived from global and 
CONUS temperatures from six CMIP5 GCMs used in many of FrEDI’s underlying damage functions. Figure 
D-1 plots the CONUS versus global average temperatures as a function of the six GCMs (from RCP8.5), 
where each point represents an era (i.e., 2030, 2050, 2070, 2090). All temperature changes presented are 
relative to the 1985-2006 baseline period.  

FIGURE D-1. CONUS VS. GLOBAL TEMPERATURES BY GCM 

 
This plot shows global and CONUS temperatures for the six GCMs, from RCP8.5, where each data point represents average 
temperatures during an era of warming.  

The relationship between CONUS and global temperatures is relatively stable across GCMs and over time, 
which allows for the development of a generalized relationship between global and CONUS temperature 
anomalies. The coefficients of this equation are in Table D-1.71  

 
71 RCP8.5 is used in this analysis for consistency with the use of RCP8.5 to define impacts by degree, however the 
relationship is stable across RCPs. Rerunning the regression estimate in Table D-1 with both RCP8.5 and RCP4.5 yields a 
coefficient of 1.444 (compared to 1.421 using only RCP8.5).  
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TABLE D-1. CONUS TO GLOBAL TEMPERATURE TRANSLATION COEFFICIENT ESTIMATES 

Regression estimates relating CONUS and global temperature changes, relative to a 1986-2005 baseline. 

 ΔTCONUS  

ΔTGLOBAL 1.421 *** 
 (0.000)  
R-squared 0.990  
Adjusted R-
squared 0.990  
N 24  
Standard errors listed below coefficients, in 
parentheses. * p<0.05; ** p<0.01; *** p<0.001 

These coefficients are used to translate global temperature inputs into CONUS temperatures, however if a 
user inputs CONUS temperatures, the inverse of the formula can also be used to generate global 
temperatures. 

In general, relative to global temperatures, the use of CONUS temperatures in FrEDI reduces scatter, 
improves fit, and allows better emulation of GCMs that might not have been used to generate the sector-
specific damage functions. However, note that there are some sectors where an impact may be better 
associated with global rather than CONUS temperatures, in the case where the impacts are a function of 
large-scale weather pattern or ocean circulation changes. Additionally, if global temperatures are input to 
FrEDI rather than CONUS temperatures, the translation from global to CONUS temperatures is fixed and 
does not take into account how that relationship might vary by GCM and over time, for example with 
stabilization. 

D.2 Calculation of global mean sea level 
If a user provides FrEDI with an input temperature trajectory, but does not provide a custom sea-level rise 
trajectory, FrEDI calculates the projected sea-level rise at runtime from input amount of temperature 
change. To calculate global mean sea level from global mean temperature, we use a semi-empirical sea 
level model from Kopp et al., 2016.72 This model relates the rate of global mean sea level rise (dh(t)/dt) to 
global mean temperature at time T(t), an equilibrium temperature Te(t), and a small residual trend arising 
from the long-term response to earlier climate change ∅(t), relative to 2000 using equation 10 from Kopp et 
al., (2016). 

𝑑𝑑ℎ(𝑡𝑡)
𝑑𝑑𝑡𝑡

= 𝑎𝑎 ∗ �𝑇𝑇(𝑡𝑡) − 𝑇𝑇𝑒𝑒(𝑡𝑡)� + ∅(𝑡𝑡)        (Equation D-1) 

In the equation above, Te(t) and ∅(t) are functions of time, where: 

 
72 See Kopp, R. E., Kemp, A. C., Bittermann, K., Horton, B. P., Donnelly, J. P., Gehrels, W. R., ... & Rahmstorf, S. (2016). 
Temperature-driven global sea-level variability in the Common Era. Proceedings of the National Academy of Sciences, 
113(11), E1434-E1441. 
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𝑑𝑑𝑇𝑇𝑒𝑒(𝑡𝑡)
𝑑𝑑𝑡𝑡

=  (𝑇𝑇(𝑡𝑡)−𝑇𝑇𝑒𝑒(𝑡𝑡))
𝑡𝑡𝐺𝐺𝑢𝑢1

        (Equation D-2) 

𝑑𝑑∅(𝑡𝑡)
𝑑𝑑𝑡𝑡

=  −∅(𝑡𝑡)
𝑡𝑡𝐺𝐺𝑢𝑢2

           (Equation D-3) 

The parameter values are estimated from the probability distributions of the semiempirical model 
parameters in Figure S5, and Dataset S1j, focusing on the posterior distribution calculated with the Mann et 
al., (2009) temperature data set.73 We use the median parameter values across the distributions for this 
calculation. We used HadCrUT4 to determine the appropriate temperature offset between the actual 
temperature and the equilibrium temperature in 2000.  

TABLE D-2. PARAMETER VALUES USED IN THIS ANALYSIS, FROM KOPP ET AL., 2016, MEDIAN AND 5TH 
AND 95TH PERCENTILES. 

Parameter Value Units 
∅(2000) 0.14 (0.05, 0.29) mm/yr 

tau1 174 (87, 366) Year 
tau2 4175 (1140, 17670) Year 

a 4.0 (3.2, 5.4) mm/yr/K 
Te(2000) -0.05 (-0.12, 0.07) K 

Future versions of FrEDI may use several different approaches for addressing uncertainty. Some of these 
approaches include: using the parameter distributions in S1j using a Monte Carlo approach to sample the 
parameters distributions provided in Kopp et al., (2016), Mann et al., (2009), and Marcott et al., (2013)74; 
calibrating Te(2000) and alpha parameters to emulate the range of sea level rise from AR6; and examine 
low-probability high impact outcomes such as the sea level rise projection including ice sheet instability 
from AR6 or the higher Sweet et al. (2017) scenarios.75 Some approaches (such as using the normal 
distributions for parameters or the alternate parameter set calibrated against Marcott et al. (2013)) will be 
straightforward, but others may be more challenging to implement. The semi-empirical approach was not 
designed to incorporate future sea level rise processes that were not observed in historical data such as ice 
sheet instability and may not be accurate for multi-century applications. We note that the user can supply 
FrEDI with exogenous global mean sea level rise scenarios instead of calculating them from global mean 
temperature.

 
73 See Mann, M. E., Zhang, Z., Rutherford, S., Bradley, R. S., Hughes, M. K., Shindell, D., ... & Ni, F. (2009). Global signatures 
and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. science, 326(5957), 1256-1260. 
74 See previous references and Marcott, S. A., Shakun, J. D., Clark, P. U., & Mix, A. C. (2013). A reconstruction of regional and 
global temperature for the past 11,300 years. science, 339(6124), 1198-1201. 
75 See Sweet, W. V. and Horton, R. and Kopp, R. E. and LeGrande, A. N. and Romanou, A. (2017). Climate Science Special 
Report: Fourth National Climate Assessment, Volume I. U.S. Global Change Research Program. 
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E. APPENDIX E| SOCIAL VULNERABILITY MODULE 

E.1 Overview  
The main purpose of this module is to integrate the underlying data and analytical approach from EPA’s 
Social Vulnerability Report76 (hereafter referred to as the SV report) into the FrEDI tool. This allows users to 
explore how the impacts of climate change will be distributed among four population groups of concern: 
(1) individuals with low income (below two times the national poverty line), (2) those identifying as Black, 
Indigenous, or people of color (BIPOC), (3) those that are without a high school diploma, and (4) those that 
are 65 years of age or older. Analyzing impacts and disproportionality for specific racial and ethnic 
populations (e.g., Black or African American, Hispanic, Asian, etc.) within the BIPOC group has also been 
incorporated into the FrEDI module, consistent with data presented in the SV Report. Note that in contrast 
to the main sector calculations in FrEDI, the SV module estimates impacts for seven CONUS regions, to 
maintain consistency with the methodology in EPA’s peer-reviewed SV Report. The regions used are 
defined in the 4th and 5th National Climate Assessment (NCA) of the U.S. Global Change Research Program 
(see Figure E-1). 

FIGURE E-1. NCA REGIONS (SPATIAL LEVEL OF SV MODULE OUTPUTS) 

 
Map of seven NCA regions of the U.S. Global Change Research Program. 

 

 
76 https://www.epa.gov/cira/social-vulnerability-report  
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E.2 Features of the module  
The SV module assesses the disproportionate impacts of climate change under any user-defined scenario of 
temperature change across select sector categories. In order for consideration, the underlying sector study 
from the SV Report must first meet specific qualifications for technical feasibility. 

1. Fine spatial scale: At least county-level results but preferably census tract. 
2. Physical impacts: Easily converted to “physical” impacts per population unit or as a non-

monetary impact metric (for example, incidence per 100,000 for health impacts or damage 
ratios for flooding damage), ideally avoiding economic impacts because the burden of the same 
monetary cost can be realized differently across individuals with, for example, different levels of 
income. 

The sectors included in FrEDI-SV are listed in Table E-1, which also lists the impact estimated and whether a 
variant is included for the sector. Note that not all sectors in FrEDI have been incorporated in FrEDI-SV – the 
sectors included in FrEDI-SV are a subset of sectors in the main FrEDI domain, but as noted in the second 
column of the table below, all sectors included in FrEDI-SV have a corresponding impact type in FrEDI. 
FrEDI-SV includes physical metrics from six FrEDI sectors for which EPA has conducted a peer-reviewed 
analysis of the distributional impacts of climate change in EPA’s SV Report. 

TABLE E-1. SECTORS CURRENTLY IMPLEMENTED IN FREDI-SV 

Social Vulnerability 
Report Sector 

Corresponding FrEDI-SV Impact 
Type 

FrEDI-SV Metric of 
Impact 

Spatial 
Scale 

Default 
Adaptation 

scenario 

Air Quality and Health 

Air quality and new asthma cases 
(PM2.5 only) 

New childhood asthma 
cases (age 0-17)   

Tract 
No Additional 

Adaptation 

Air quality and premature mortality 
(PM2.5 only) 

Premature mortality 
(over age 65 only) 

Tract 
No Additional 

Adaptation 

Extreme Temperature 
and Healtha Extreme temperature and mortality 

Premature mortality 
(all ages)  

Tract 
No Additional 

Adaptation 
Extreme Temperature 
and Labor 

Extreme temperature and labor Work hours lost Tract 
No Additional 

Adaptation 
Temperature/Precip. 
and Trafficb 

Roads: Temp/Precip and traffic Hours of traffic delay Tract 
No Additional 

Adaptation 

Coastal Flooding and 
Traffic 

Transportation impacts from high 
tide flooding Hours of traffic delay Tract 

Reasonably 
Anticipated 
Adaptation 

Coastal Flooding and 
Property 

Coastal flooding and property 
Individuals threatened 
with total property loss 

Block 
Group 

No Additional 
Adaptation 

Notes: 
a. Based on the Mill et al. (2015) Extreme Temperature study. 
b. Note that the impact of temperature and precipitation on road integrity and delays is not included in the main text of 
the social vulnerability report, but the method and results are described in detail in Appendix G of that report. 
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Briefly, the FrEDI-SV module uses damage functions (i.e., physical impacts by CONUS half-degree 
temperature increment) at the census tracts or block group level for each sector, which are derived from 
the same “main FrEDI” sectoral analyses but limited to selected physical impacts. Note that the impact 
metrics used in the SV module are physical measures, which are not included for all sectors in the main 
FrEDI code. For example, for the Coastal Flooding and Property category, the physical impact metric, 
individuals threatened with total property loss, aligns with the impact metric included in the SV report. In 
contrast, the Coastal Property impact metric used elsewhere in FrEDI is total monetized property damage 
or loss. The physical metric used in FrEDI-SV is designed to consider the likelihood of permanent home loss 
through repeated flood episodes causing damage and serves as an indicator of the most severe impacts of 
coastal flooding. Total property loss can be triggered by intense and repeated damage from storm surge or 
by permanent inundation from sea level rise. FrEDI identifies the annual expected damages to residential 
structures within a block group, and the property loss scenario considers properties which reach the 10 
percent annual expected damage threshold – that is, total home loss is expected within a decade. This 
aligns with the assumption for a threat of abandonment in the underlying sector study for coastal 
property.77 Nonetheless, both the FrEDI and FrEDI-SV metrics are derived from the same underlying 
National Coastal Property Model runs included in the published and peer-reviewed Neumann et al. (2021). 

The FrEDI-SV module also relies on demographic population information. While the SV Report did not 
consider population growth, total national population growth projections are included in the FrEDI-SV 
module so that it is consistent with the impacts derived from main FrEDI. The relative percent of each 
population group in each census tract are taken from current demographic patterns from the U.S. Census 
American Community Survey (ACS) dataset (2014-2018) (accessed via the IPUMS platform).78 In the FrEDI-
SV module, current demographic patterns are applied to projections of total national population growth 
(from ICLUS) and are held constant overtime because robust and long-term projections for local changes in 
demographics are not readily available. Therefore, FrEDI-SV does not consider how changes in future 
demographic patterns in the U.S. could affect risks to these populations. 

As shown in Table E-1, the FrEDI-SV module is also designed with the capability to assess the impacts across 
different adaptation scenarios in each sector. The default adaptation assumption considered for most of 
the sectors in the FrEDI-SV module is a ‘no additional adaptation’ scenario, which current adaptation 
responses and human acclimatization to hazards are incorporated in the projection, but no additional 
planned adaptation investments are modeled beyond those already in place. For transportation impacts 
from high tide flooding, a “reasonably anticipated” adaptation scenario is used as the default, which 

 
77 See Neumann, J. E., Chinowsky, P., Helman, J., Black, M., Fant, C., Strzepek, K., & Martinich, J. (2021).  Climate effects on 
US infrastructure: the economics of adaptation for rail, roads, and coastal development. Climatic Change. 
https://doi.org/10.1007/s10584-021-03179-w  
78 This analysis relied on the IPUMS platform to download ACS data through its National Historical Geographic Information 
System (NHGIS).  The NGHIS codes for data this report relies upon are provided in Table 3, Appendix C of the SV Report. For 
the IPUMS platform see Manson S, Schroeder J, Van Riper D, Kugler T, and Ruggles S. IPUMS National Historical Geographic 
Information System: Version 15.0 American Community Survey 2014-2018a. Minneapolis, MN: IPUMS. 2020. 
http://doi.org/10.18128/D050.V15.0.  Note that the NHGIS field codes in Table 3 are unique to IPUMS – ACS table numbers 
differ from the field codes shown in the SV report, but the data are identical. 

https://doi.org/10.1007/s10584-021-03179-w
http://doi.org/10.18128/D050.V15.0
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incorporates virtually costless and autonomous adaptation actions. As with the main FrEDI module, the 
ability to incorporate damage functions under different adaption assumptions depends on the data 
available in the underlying studies. Alternative adaptation scenarios in FrEDI-SV currently include proactive 
adaptation scenarios for both roads and coastal property. In cases where alternative adaptation scenarios 
are included, which apply to sectors in the last three rows of Table E-1, those results are directly reported 
along with the default assumptions from the FrEDI-SV module.  

E.3 Approach  
This section describes the overall methodological approach behind the FrEDI-SV module, for a given set of 
climate scenarios (temperature trajectories). 

Similar to the main FrEDI module, a series of pre-processing steps are first used to incorporate the 
underlying peer-reviewed studies from the SV report into a series of impact-temperature damage functions 
at the census tract level. In contrast with the main FrEDI module, which uses a database of state-
aggregated impact-temperature functions from (mainly) six individual GCMs, the FrEDI-SV module uses 
impact-temperature relationship derived from the average across all six GCMs. This significantly reduces 
the processing time and database file size to compensate for the increased spatial detail in this module.  

When run in R, the FrEDI-SV module then uses this database of damage functions in the following steps:  

1. Determine the physical impacts per population at the census tract level for each year of the input 
temperature and population trajectories. With this, the R-code uses a linear interpolation between 
half degrees79 of warming from the input temperature trajectory. 

2. Calculate aggregate impacts and populations at the regional and CONUS levels each year, for both 
the population groups of concern and reference populations. This is done by weighting the impacts 
at the census tract or block group by the respective population groups. Here is where we apply 
county-level population projections by applying county-level growth ratios to census tract or block 
group populations. 

3. Calculate the variables used to calculate the disproportionality metrics (e.g., difference in risk, with 
and without adaptation (if available)), as used in EPA’s SV Report and described in detail in the 
following section. 

E.4 Disproportionality, difference in risk calculation 

The following text provides additional detail about the steps taken to calculate the disproportionate risks 
(or difference in risk) of currently living in a location that is projected to experience the largest impacts 
from climate change. Figure E-2 provides a visual representation of these steps. Table E-2 shows an 
example of each calculation step.  Note that all four steps are completed within the FrEDI-SV module during 

 
79 Note that in contrast, the main FrEDI module linearly interpolates between integer degrees of warming.  
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runtime, rather than in pre-processing of underlying study results – this is one reason that FrEDI-SV 
requires longer runtimes relative to the main FrEDI module. 

FIGURE E-2. FOUR STEPS FOR ASSESSING THE DISPROPORTIONALITY OF IMPACTS ON SPECIFIC 
POPULATIONS 

 

Step 1: Categorize the annual spatial impact data into three groups: high, medium, and low impact 
locations. We use the annual impacts per population (relative impacts or rates) associated with the input 
temperature and population trajectories to categorize the annual spatial climate impacts (by Census tracts 
or block groups) into three evenly sized groups, called terciles. The focus of this risk analysis is on the 
composition of populations found in the ‘high impact’ group because we are attempting to identify cases 
where specific populations are more likely to currently live in areas that will experience the largest impacts 
from climate change. Note that the spatial resolution of the analysis varies by sector (e.g., census tract or 
block group), but is consistent within each sector. For coastal properties and high tide flooding, we only 
consider populations that live in coastal areas and are exposed to the coastal hazards of sea-level rise or 
storm surge during the 21st century projection period – we do not include inland areas.  

Step 2: Identify and count specific populations by location. As discussed in the SV report, while we cannot 
observe exactly which individuals are exposed to the relevant climate hazard, we can overlay the impact 
results and population groups by location. For demographic patterns, we rely on data from the American 
Community Survey (2014-2018) at the Census tract or block group (see Section E.6) to (1) count the number 
of individuals in each population group of concern (sv_group) relative to reference population and then (2) 
weight the proportions by relevant exposed population for each climate hazard (e.g., children aged 0-17 
years for childhood asthma). In the absence of projections describing how detailed demographics will shift 
over the century, we assume the relative distribution of overburdened to non-overburdened populations is 
fixed at 2014-2018 levels.  

Step 3: Calculate the likelihood that populations live in the locations expected to experience the highest 
climate impacts. After identifying the total populations of interest (and remaining populations) living in 
each ‘high impact’ area in Steps 1 and 2, we calculate the likelihood of living in a high impact location, 
relative to the reference domain, for both the population of interest and the reference population. 

1. Categorize the 
impact results 

into three groups: 
high, medium, 

and low impacts 
locations. 

2. Identify and 
count 

overburdened 
populations by 

spatial unit, 
weighted by the 
relevant impact 

category. 

3. Calculate the 
likelihood that 
overburdened 

populations live in 
the locations 
expected to 

experience the 
highest climate 

impacts. 

4. Compare the 
likelihood of 

overburdened 
populations to the 

rest of the 
population.
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Step 4: Compare the likelihoods of population groups of concern and reference populations. Relative 
likelihoods are calculated by comparing likelihoods that populations of interest are living in high impact 
areas compared to their reference population. These likelihoods relative to the reference population are 
calculated at the national and regional level. The likelihood measures are separately calculated for each 
social vulnerability metric and sector for each year of the temperature and population trajectories. These 
likelihood metrics can be interpreted as the degree to which climate impacts disproportionately affect 
population groups of concern relative to each reference population. 

TABLE E-2. EXAMPLE CALCULATION OF DISPROPORTIONATE IMPACTS ON AN EXAMPLE POPULATION 
EACH YEAR 

Step Example Results and Values 
1. Identify high impact areas for each 
specific sector and each year 

• The result is an allocation of census tracts into high, medium, and low impact 
groupings, with the same number tracts in each grouping.  

• In this example, the total population experiencing sectoral impacts in a given 
year is 115 million across all three impact groupings:  
o 22 million people in specific group of concern 
o 93 million people in reference population 

2. Identify specific populations within 
‘high impact’ areas for each sector and 
year 

• Populations living within high impact census tracts for a specific sector in a 
given year:  
o 3.5 million people in group of concern 
o 14 million are in the reference population 

3. Calculate the likelihood of living in a 
high impact area for each sector and 
year 

• Likelihood of living in high impact area for a specific sector in a given year: 
o 3.5/22 = 0.16: likelihood individuals in specific group are living in high 

impact areas 
o 14/93 = 0.15: likelihood individuals in the reference population are living 

in high impact areas 
4. Compare likelihoods of each 
population group for each sector and 
year 

• Group of concern likelihood / reference population likelihood = 0.160/0.147 
= 1.09. 
o 1.09 - 1 = 9% difference in risk 

E.5 Calculating impacts and rates by population groups 
The previous section provides the method for estimating likelihood ratios, the first of three results metrics 
generated by FrEDI-SV. Below is the process for estimating the impacts (e.g., incidence counts) and rates of 
impacts for population groups of concern and reference populations for each temperature scenario, using a 
weighted average impact for CONUS and each region – the remaining two metrics. In this case, 
“pop_weights” are the fraction of the population that are impacted, for example, people that are 17 or 
younger make up the childhood asthma population, so a weight is applied that reflects the portion of the 
population at age 17 or younger. Note that the equations below are for impacts by tract, which applies to 
most sectors, but some sectors (coastal properties, for example) include impacts by census block group. 

Total impacts by tract: Multiply impact by weighted populations in each population 

 impacts_sv_tract = rate_tract * sv_population_tract * pop_weights 
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 impacts_ref_tract = rate_tract * ref_population_tract * pop_weights 

Total impacts by region: Sum impacts for each region (and CONUS) and each population 

 impacts_sv_region = Sum(impacts_sv_tract) 

impacts_ref_region = Sum(impacts_ref_tract) 

Average rates by region and CONUS  

 Impact_sv_region = impacts_sv_region / (sv_population_region * pop_weights)  

 Impact_ref_region = impacts_ref_region / (ref_population_region * pop_weights) 

Total avoided cases for sv group, in scenario with policy action relative to baseline 

Avoided_cases_sv_region = impacts_sv_region_policy - impacts_sv_region_baseline 

E.6 Demographic data 
Analyses in the FrEDI-SV module rely on demographic data from the five-year American Community Survey 
2014-2018 (ACS). Where available, data are collected at the block group level or the census tract level. We 
rely on the IPUMS80 platform to download ACS data through its National Historical Geographic Information 
System (NHGIS). 

Population groups of concern include: 

• Low Income: We define “low income” as populations living in households that have an aggregate 
income that is at most, twice the poverty threshold. ACS definitions for poverty thresholds are not 
geographically differentiated but do vary by household composition. Additional information on the 
definition of poverty thresholds can be found on the Census website.81 In the SV module we 
aggregate the estimates of population living in those households that fall into income to poverty 
threshold ratios below two. 

• BIPOC (ACS and the SV Report both use the term “Minority”)82: The ACS provides race and 
ethnicity information at the block group level. We define BIPOC as all racial and ethnic groups 

 
80 IPUMS had previously been an acronym for Integrated Public Use Microdata Series, but not all of the data it accesses is 
public or is microdata, so since 2016 it has been known only by its acronym. 
81 https://www.census.gov/topics/income-poverty/poverty/guidance/poverty-measures.html 
82 Consistent with other EPA reports, FrEDI-SV uses the abbreviation “BIPOC” (for Black, Indigenous, and people of color) to 
refer to individuals identifying as Black or African American; American Indian or Alaska Native; Asian; Native Hawaiian or 
Other Pacific Islander; and/or Hispanic or Latino. It is acknowledged that there is no ‘one size fits all’ language when it 
comes to talking about race and ethnicity, and that no one term is going to be embraced by every member of a population 
or community. The use of BIPOC is intended to reinforce the fact that not all people of color have the same experience and 
cultural identity. This report therefore includes, where possible, results for individual racial and ethnic groups. Note the SV 
report reported results for this group as attributed to a “minority” category. The results are the same here but the category 
title has been updated. 
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except white, non-Hispanic. The module relies on total population and white, non-Hispanic 
population to calculate BIPOC population at the block group spatial scale. 

• No High School Diploma: The ACS tracks information on educational attainment – in this analysis 
we consider populations without a high school diploma to be an overburdened demographic. To 
estimate the number of people per block group with an educational credential of less than a high 
school diploma or equivalent, we rely on educational attainment data for the population 25 years 
or older. 

• 65 and Older: The module identifies people aged 65 or older as overburdened. We use age 
demographic information from the ACS to determine 65 and older populations at the block group 
level by aggregating population estimates for age groups provided by the ACS counting people 65 or 
older. 

E.7 Outputs and Visualization 
FrEDI-SV regional outputs (defined in Table E-3) can be used to assess: 1) absolute impacts on population 
groups of concern; 2) differences in risks (or exposure to hazards) across populations (a measure of 
disproportionality); and 3) the relative rates of impacts across different populations. Example uses of the 
FrEDI SV module could also include comparison of disproportionality across multiple scenarios, such as a 
user-defined baseline and a GHG mitigation policy scenario. Example uses are shown in Chapter 3 and 
discussed in detail below.  

TABLE E-3. FREDI SV MODULE OUTPUT DATA DICTIONARY 

Variable Description 
svGroupType Population group of concern category (e.g., ‘sv_’) or racial/ethnic group (e.g., ‘race_’) 
driverUnit Units of climate driver (centimeters of sea level rise or degrees Celsius of temperature) 
driverValue Value of climate driver relative to baseline 
year Year 
impPop_ref Number of impacted people in the reference population. Counts people who both live in a region 

where climate damages are assessed for the sector and fall into the population assessed by the sector 
(Labor: high-risk workers, Air Quality - Premature Mortality: age 65+, Air Quality - Childhood Asthma: 
age 17 and under, Coastal Properties: residents of the coastal zone, High Tide Flooding and Traffic: 
residents of the coastal zone, Extreme Temperature: residents of 49 CONUS urban centers including 91 
counties included in the underlying study, Mills et al. 2014, Roads: all people). 

impPop_sv Number of impacted people in the population group of concern. Counts people who both live in a 
region where climate damages are assessed for the sector and fall into the population assessed by the 
sector (Labor: high-risk workers, Air Quality - Premature Mortality: age 65+, Air Quality - Childhood 
Asthma: age 17 and under, Coastal Properties: residents of the coastal zone, High Tide Flooding and 
Traffic: residents of the coastal zone, Extreme Temperature: residents of 49 CONUS urban centers 
including 91 counties included in the underlying study, Mills et al. 2014, Roads: all people). 

impact_ref Total impact in the reference population (childhood asthma cases, mortality, hours of labor lost, hours 
of delay, or number of individuals threatened with total property loss, depending on sector) 

impact_sv Total impact in the population group of concern (childhood asthma cases, mortality, hours of labor lost, 
hours of delay, or number of individuals threatened with total property loss, depending on sector) 
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Variable Description 
national_high
RiskPop_ref 

Number of impacted people in the reference population living in tracts in the highest tercile of impacts 
nationally (subset of impPop_ref) 

national_high
RiskPop_sv 

Number of impacted people in the overburdened population living in tracts in the highest tercile of 
impacts nationally (subset of impPop_sv) 

regional_high
RiskPop_ref 

Number of impacted people in the reference population living in tracts in the highest tercile of impacts 
regionally (subset of impPop_ref) 

regional_high
RiskPop_sv 

Number of impacted people in the overburdened population living in tracts in the highest tercile of 
impacts regionally (subset of impPop_sv) 

aveRate_ref Impacts per person or per 100k people (depending on the sector) for the reference population 
aveRate_sv Impacts per person or per 100k people (depending on the sector) for the overburdened population 
scenario Name of user-provided climate scenario 
variant Adaptation scenario variant (e.g. with adaptation or without adaptation) 

First, the FrEDI SV module outputs can be used to assess the risks (defined as the likelihood of living in 
areas projected to experience the largest impacts from climate change) for each population group of 
concern relative to those of the national impacted population, as follows: 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑇𝑇𝐷𝐷𝑇𝑇𝐷𝐷𝐷𝐷𝑇𝑇 𝐷𝐷𝐷𝐷 𝑅𝑅𝐷𝐷𝑅𝑅𝑅𝑅 = �𝑛𝑛𝐺𝐺𝑡𝑡𝑒𝑒𝑛𝑛𝑛𝑛𝐺𝐺𝑒𝑒_ℎ𝑒𝑒𝑖𝑖ℎ𝑅𝑅𝑒𝑒𝑒𝑒𝑅𝑅𝐺𝐺𝑛𝑛𝐺𝐺𝑆𝑆𝑆𝑆/𝑛𝑛𝐺𝐺𝑡𝑡𝑒𝑒𝑛𝑛𝑛𝑛𝐺𝐺𝑒𝑒_ℎ𝑒𝑒𝑖𝑖ℎ𝑅𝑅𝑒𝑒𝑒𝑒𝑅𝑅𝐺𝐺𝑛𝑛𝐺𝐺𝑟𝑟𝑒𝑒𝑟𝑟
𝑒𝑒𝑇𝑇𝐺𝐺𝐺𝐺𝑛𝑛𝐺𝐺𝑆𝑆𝑆𝑆/𝑒𝑒𝑇𝑇𝐺𝐺𝐺𝐺𝑛𝑛𝐺𝐺𝑟𝑟𝑒𝑒𝑟𝑟

� − 1    (Equation E-1) 

These results are shown in the top panels of Figure 8 in the main text and can be interpreted as: A specific 
population group (sv) is x% more likely to live in a location that is projected to experience the greatest 
impacts of climate change compared to the reference population.  

Outputs from the FrEDI SV module can also be used to assess the relative rates of impacts between 
different population groups or individuals of different races and ethnicities, as well as differences in impact 
rates. These types of analyses can be done by comparing the ‘aveRate_sv’ and ‘aveRate_ref’ outputs for 
each group and sector from the SV module (example in bottom panels of Figure 8), which can be 
equivalently calculated from the impact [sv or ref]/impPop_[sv or ref] variables. Example results from this 
type of calculation are shown in the bottom panels of Figure 8.  

To apply this calculation to a mitigation scenario and to calculate the relative benefits that will be 
experienced by different population groups, follow Equation D-2 

𝐵𝐵𝑇𝑇𝐷𝐷𝑇𝑇𝐷𝐷𝐷𝐷𝑡𝑡𝑅𝑅 𝑅𝑅𝑇𝑇𝑅𝑅𝑎𝑎𝑡𝑡𝐷𝐷𝑅𝑅𝑇𝑇 𝑡𝑡𝑃𝑃 𝑡𝑡ℎ𝑇𝑇 𝑅𝑅𝑇𝑇𝐷𝐷.𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃𝑅𝑅𝑎𝑎𝑡𝑡𝐷𝐷𝑃𝑃𝐷𝐷 =  𝑏𝑏𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛𝑒𝑒𝑏𝑏𝐺𝐺𝑒𝑒𝑛𝑛𝑏𝑏𝑏𝑏𝑖𝑖𝑅𝑅𝐺𝐺𝑡𝑡𝑒𝑒𝑆𝑆𝑆𝑆−𝐺𝐺𝑛𝑛𝑒𝑒𝑒𝑒𝐺𝐺𝑒𝑒𝑏𝑏𝐺𝐺𝑒𝑒𝑛𝑛𝑏𝑏𝑏𝑏𝑖𝑖𝑅𝑅𝐺𝐺𝑡𝑡𝑒𝑒𝑆𝑆𝑆𝑆
𝑏𝑏𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛𝑒𝑒𝑏𝑏𝐺𝐺𝑒𝑒𝑛𝑛𝑏𝑏𝑏𝑏𝑖𝑖𝑅𝑅𝐺𝐺𝑡𝑡𝑒𝑒𝑟𝑟𝑒𝑒𝑟𝑟−𝐺𝐺𝑛𝑛𝑒𝑒𝑒𝑒𝐺𝐺𝑒𝑒𝑏𝑏𝐺𝐺𝑒𝑒𝑛𝑛𝑏𝑏𝑏𝑏𝑖𝑖𝑅𝑅𝐺𝐺𝑡𝑡𝑒𝑒𝑟𝑟𝑒𝑒𝑟𝑟

   (Equation E-2) 

To calculate the extent to which disproportionate impacts may be exacerbated or mitigated under a 
temperature mitigation scenario, follow Equation D-3. 

𝐶𝐶ℎ𝑎𝑎𝐷𝐷𝑎𝑎𝑇𝑇 𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷𝑅𝑅𝑇𝑇𝐷𝐷𝑃𝑃𝑇𝑇𝑃𝑃𝐷𝐷𝑡𝑡𝐷𝐷𝑃𝑃𝐷𝐷𝑎𝑎𝑅𝑅 𝐼𝐼𝑇𝑇𝑇𝑇𝑎𝑎𝐷𝐷𝑡𝑡𝑅𝑅 𝐷𝐷𝑃𝑃𝐷𝐷 𝐸𝐸𝑎𝑎𝐷𝐷ℎ 𝐺𝐺𝐷𝐷𝑃𝑃𝑃𝑃𝑇𝑇 𝑏𝑏𝑇𝑇𝑡𝑡𝑏𝑏𝑇𝑇𝑇𝑇𝐷𝐷 𝑎𝑎 𝐵𝐵𝑎𝑎𝑅𝑅𝑇𝑇𝑅𝑅𝐷𝐷𝐷𝐷𝑇𝑇 𝑎𝑎𝐷𝐷𝑎𝑎 𝑃𝑃𝑃𝑃𝑅𝑅𝐷𝐷𝐷𝐷𝑃𝑃 𝑉𝑉𝐷𝐷𝑇𝑇𝐷𝐷𝑎𝑎𝐷𝐷𝐷𝐷𝑃𝑃 =
 𝑏𝑏𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛𝑒𝑒𝑏𝑏𝐺𝐺𝑒𝑒𝑛𝑛𝑏𝑏𝑏𝑏𝑖𝑖𝑅𝑅𝐺𝐺𝑡𝑡𝑒𝑒𝑆𝑆𝑆𝑆
𝑏𝑏𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛𝑒𝑒𝑏𝑏𝐺𝐺𝑒𝑒𝑛𝑛𝑏𝑏𝑏𝑏𝑖𝑖𝑅𝑅𝐺𝐺𝑡𝑡𝑒𝑒𝑟𝑟𝑒𝑒𝑟𝑟

 −  𝐺𝐺𝑛𝑛𝑒𝑒𝑒𝑒𝐺𝐺𝑒𝑒𝑏𝑏𝐺𝐺𝑒𝑒𝑛𝑛𝑏𝑏𝑏𝑏𝑖𝑖𝑅𝑅𝐺𝐺𝑡𝑡𝑒𝑒𝑆𝑆𝑆𝑆
𝐺𝐺𝑛𝑛𝑒𝑒𝑒𝑒𝐺𝐺𝑒𝑒𝑏𝑏𝐺𝐺𝑒𝑒𝑛𝑛𝑏𝑏𝑏𝑏𝑖𝑖𝑅𝑅𝐺𝐺𝑡𝑡𝑒𝑒𝑟𝑟𝑒𝑒𝑟𝑟

        (Equation E-3) 

 Example results from these types of analyses are shown in Figure 17 of the main text.  
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E.8 Comparison of FrEDI-SV to Underlying EPA (2021) Climate Change and 
Social Vulnerability Study 
As noted in Section E.1, the FrEDI-SV module is based on methods and data developed for EPA’s peer-
reviewed Social Vulnerability Report.83 To ensure that the module produces results consistent with those in 
the Social Vulnerability Report, we ran the FrEDI-SV module with similar inputs to those used in the report 
itself. This section provides a comparison of selected FrEDI-SV module results to results presented in the 
Social Vulnerability report for a hypothetical two-degree warming scenario.  

The cross-consistency test presented here focuses on the Air Quality – Childhood Asthma sector results. 
Table E-4 provides a comparison of one of the FrEDI-SV metrics, the total impacts in terms of cases of 
childhood asthma diagnoses, at two degrees of warming. As shown in the table, the differences between 
FrEDI-SV results and those presented in the SV Report are small. These small differences are largely driven 
by two factors: 

1. Warming arrival time. Impacts in The SV Report were reported for degrees of mean global warming, 
while FrEDI-SV calculates impacts based on mean CONUS warming. Table E-4 includes a comparison 
between the number of new childhood asthma diagnoses per year from climate-driven changes in 
air quality, predicted at 2°C global warming (SV Report) and the best match of 2°C global to CONUS 
warming (FrEDI-SV). Differences in arrival time (i.e., year where 2°C is reached) between the global 
and CONUS projections cause minor discrepancies between the two impact estimates. 

2. Changes in the distribution of sub-regional populations overtime. The SV Report used static 
population from the Bureau of the Census American Community Survey (ACS) centered on 2016 at 
the spatial scale appropriate for each sector (county, tract, etc.). FrEDI-SV, however, uses user-
supplied regional population projections and disaggregates them to the county level using ratios 
calculated from ICLUSv2 projections (to downscale to state from region and then to county from 
state). These county-level ratios change over time with the ICLUS projections. The county 
populations are then further disaggregated to the tract level using static current-day ratios 
calculated from the same ACS data used in the SV report (tract/county). This second set of ratios is 
static and does not change over time. 

 
83 https://www.epa.gov/cira/social-vulnerability-report  
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TABLE E-4. COMPARISON OF PROJECTED CHANGES IN ANNUAL CHILDHOOD ASTHMA DIAGNOSES DUE TO 
CLIMATE-DRIVEN EFFECTS ON PM2.5 

Comparison of results from FrEDI-SV module from FrEDIv3.484 (FrEDI-SV below) to results reported in EPA’s Climate Change 
and Social Vulnerability report (SV Report – Table 3.3 on page 26), for 2° C of global warming (GMAT). Difference between 
the estimates is also shown.  

Region 
Number of New Childhood Asthma Diagnoses Per Year 

2 Degree FrEDI-SV 2 Degree SV Report Difference 
Midwest -1,100 -1,100 0 
Northeast 520 450 70 
Northern Plains -69 -75 6 
Northwest 120 130 10 
Southeast 1,900 2,000 100 
Southern Plains 50 40 10 
Southwest 1,000 1,000 0 
National Total 2,500 2,500 0 
Note: All estimates rounded to two significant figures.  

 
Figure E-3 shows the comparison of the difference in risk of currently living in a location projected to 
experience large changes in climate-driven changes in air quality, for overburdened populations relative to 
their reference populations at two degrees warming. The results show good but not exact replication, 
owing to the previously mentioned differences in county and tract level populations. Differences between 
the results for the No High School Diploma category highlight a difference in methodological choice rather 
than a replication error. In FrEDI-SV, because the calculations for this endpoint measure impacts on 
children, the 65 and Older and No High School diploma groups are omitted. In the SV Report, the 65 and 
Older category was omitted, but the No High School Diploma category result was reported and discussed as 
a potential indicator of household overburdened status. 

FIGURE E-3. COMPARISON OF DIFFERENCE IN RISK FOR CHILDHOOD ASTHMA DIAGNOSES DUE TO 
CLIMATE-DRIVEN EFFECTS ON PM2.5 

A. FREDI-SV 

 

 
84 Note the SV Module did not change between FrEDIv3.4 and FrEDI4.1; therefore, these results are expected to hold in the 
most recent version. 
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B. SV REPORT 

 
Comparison of results from FrEDI-SV module from FrEDIv3.485 (Panel A below) to results reported in EPA’s Climate Change 
and Social Vulnerability report (Panel B below – see SV Report – Figure 3.4 on page 27), for 2° C of global warming (GMAT). 

The tests highlight the population-driven differences discussed above. However, additional offline tests of 
FrEDI with external population inputs do provide an exact replication with the SV Report values, therefore 
confirming that while FrEDI-SV module uses the same treatment of regional population projections as the 
main module, it is consistent with the effect and relative patterns/magnitudes between regions and across 
scenarios when comparing to the SV report.  

E.9 Guidance on interpreting results 
It is important to note that while there is a growing body of literature revealing the abundance of historical 
and current disproportionate impacts from climate-driven hazards, FrEDI-SV does not include these 
historical (baseline) disproportionate impacts. FrEDI estimates the impacts of climate change relative to a 
baseline. In that process, the historical (or baseline) impacts are effectively a starting point for incremental 
analysis and are controlled for in the projection results. The FrEDI-SV module also follows this approach, 
focusing on the disproportionality of climate change impacts relative to the baseline impacts. In doing so, 
the historical disproportionality of impacts has also been removed and is not the focus of the module. For 
example, it has been shown that low-income communities are more at risk of both riverine (inland) and 
coastal flooding (e.g., Wing et al. 202286). The impacts evaluated in the FrEDI-SV for flood risk to homes 
(both inland and coastal) exclude these historical disproportionate impacts by subtraction, and instead 
focus on where flood risks are increasing or decreasing compared to historical risk, and by how much. 
While baseline conditions can have an impact on the vulnerability to changes in flood risk, (e.g., a home in 
the current floodplain is more vulnerable to increases in flood occurrence or magnitude than a home 
outside the floodplain), changes in climatic conditions drive the direction (positive or negative) as well as 
magnitude of future change in flood risk.  

 
85 Note the SV Module did not change between FrEDIv3.4 and FrEDI4.1; therefore, these results are expected to hold in the 
most recent version. 
86 Wing, O.E.J., Lehman, W., Bates, P.D. et al. Inequitable patterns of US flood risk in the Anthropocene. Nat. Clim. Chang. 
12, 156–162 (2022). https://doi.org/10.1038/s41558-021-01265-6 
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For this reason, we encourage users of the FrEDI-SV tool to carefully examine the absolute risk results for 
the scenarios applied in the module, as well as the incremental changes in risk, at both the national and 
regional scale, to best understand the dynamics of how risks to specific populations change over time. 
Careful consideration of the full range of results from FrEDI-SV can enhance the interpretation of results for 
policy analysts and decision-makers as well as for external and public constituencies who may be key 
audiences for these analyses.



Technical Documentation for the Framework for Evaluating Damages and Impacts (FrEDI)  

       Page F-1 

F. APPENDIX F | UPDATE REVISION LOG 

This revision log provides a list of changes made to the documentation since publication of the 2024 FrEDI 
Technical Documentation (EPA 430-R-24-001) in August 2024.  

TABLE F-1. FREDI DOCUMENTATION REVISION LOG 

Revision Date 
Location of Revision in 

Documentation Brief Description of Change and Rationale 

[to be filled in as edits to documentation are made after 2024 final publication] 
 
FIGURE E-1. COMPARISON OF 2090 ANNUAL DAMAGES FOR GCAM REFERENCE SCENARIO ($BILLIONS)  

 
Annual damages in 2090 by FrEDI version, for temperature changes from the GCAM reference scenario (ESC3) with FrEDI 
default GDP and populations. Damages here reflect the default climate-related damages currently included within FrEDI and 
include the post-processing step of subtracting the value of mortality from Suicide from the Temperature Mortality results. 
This does not provide a comprehensive accounting of all climate-related damages to the U.S. This figure will be updated with 
comparisons to the current version as new code versions are released.  
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