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Chemicals in Food  
Children’s diets are an important pathway for exposure to some environmental chemicals and 
other contaminants. Children may be at a greater risk for exposures to contaminants because 
they consume more food relative to their body weight than do adults. Additionally, children’s 
dietary patterns are often less varied than those of adults, suggesting that there are greater 
opportunities for continuous exposure to a foodborne contaminant than in adults.1  

Food contamination can come from multiple sources, including antibiotics and hormones in 
meat and dairy products, as well as microbial contamination that can lead to illness. An 
estimated 48 million Americans suffer from foodborne illnesses each year,2 and children under 
age five have the highest incidence of most of these infections.3 Microbial contamination of 
food is monitored and regulated by a number of federal agencies, including the Department of 
Agriculture and the Food and Drug Administration.i In addition, a wide variety of chemicals 
from man-made sources may be found in or on foods, typically at low levels. Chemicals in foods 
may come from application of pesticides to crops, from transport of industrial chemicals in the 
environment, or from chemicals used in food packaging products. A number of persistent 
environmental contaminants tend to accumulate in all types of animals, and are frequently 
found in meat, poultry, fish, and dairy products. Other chemicals, such as perchlorate and a 
variety of pesticides, are often found in fruits, vegetables, and other agricultural commodities. 
Some chemicals in food, such as mercury and perchlorate, have naturally occurring as well as 
man-made sources. The health risks from chemicals in food are dependent on both the actual 
level of a chemical in the food as well as the amount of the food consumed by individuals.  

Following this text, an indicator is presented for organophosphate pesticides in selected foods. 
Many chemicals of concern in food lack sufficient data to generate reliable, nationally 
representative indicators, particularly for children. Selected chemicals of concern for children’s 
health that are frequently found in foods are summarized below. Further details can be found 
in the Biomonitoring section of this report for several of these chemicals, including 
methylmercury, polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), 
phthalates, perfluorochemicals (PFCs), and perchlorate. 

Methylmercury  

Mercury is a naturally occurring element that is released to the environment from a variety of 
sources, including the combustion of coal, the use of mercury in industrial processes, and from 
breakage of products such as mercury thermometers and fluorescent lighting, as well as from 
natural sources such as volcanoes. Mercury may enter water bodies through direct release or 

                                                      
i More information on microbial contaminants in food is available at 
http://www.fda.gov/Food/ResourcesForYou/Consumers/ucm103263.htm, http://fsrio.nal.usda.gov/pathogen-
detection-and-monitoring, and 
http://www.fsis.usda.gov/fact_sheets/Foodborne_Illness_&_Disease_Fact_Sheets/index.asp.  

http://www.fda.gov/Food/ResourcesForYou/Consumers/ucm103263.htm
http://fsrio.nal.usda.gov/pathogen-detection-and-monitoring
http://fsrio.nal.usda.gov/pathogen-detection-and-monitoring
http://www.fsis.usda.gov/fact_sheets/Foodborne_Illness_&_Disease_Fact_Sheets/index.asp
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through emissions to the atmosphere that are subsequently deposited to surface waters. 
Bacteria in water bodies convert the deposited mercury into methylmercury.4 Methylmercury 
can be absorbed by small aquatic organisms that then are consumed by predators, including 
fish.5 As each organism builds up methylmercury in its own tissues, and as smaller fish are 
eaten by larger fish, concentrations of methylmercury can accumulate, particularly in large fish 
with longer lifespans6-8 such as sharks and swordfish.9 

EPA has determined that methylmercury is known to have neurotoxic and developmental effects 
in humans.10 This conclusion is based on severe adverse effects observed in exposed populations 
in two high-dose mercury poisoning events in Japan and Iraq. Some other studies of populations 
with prenatal exposure to methylmercury through regular consumption of fish have reported 
more subtle adverse effects on childhood neurological development.11-15 Although ingestion of 
methylmercury in fish may be harmful, other compounds naturally present in many fish (such as 
high quality protein and other essential nutrients) are extremely beneficial.  

In particular, fish are an excellent source of omega-3 fatty acids, which are nutrients that 
contribute to the healthy development of infants and children.16 Pregnant women are advised to 
seek dietary sources of these fatty acids, including many species of fish. However, the levels of 
both methylmercury and omega-3 fatty acids can vary considerably by fish species. Thus, the type 
of fish, as well as portion sizes and frequency of consumption are all important considerations for 
health benefits of fish and the extent of methylmercury exposure.16 For this reason, EPA and the 
U.S. Food and Drug Administration (FDA) provide advisory information on fish consumption to 
females who are pregnant, breastfeeding, or of childbearing age, and to young children. The 
advisory encourages consumption of up to 12 ounces per week of a variety of fish and shellfish 
that are lower in mercury, or, in the absence of a local advisory, consumption of up to 6 ounces 
per week of fish caught from local waters and no other fish that week. EPA and FDA also 
recommend that these categories of women and young children avoid consuming shark, 
swordfish, tile fish, or king mackerel, because these species may contain high levels of 
methylmercury.17 Fish that are high in omega-3 fatty acids and low in mercury are expected to 
offer the greatest health benefits.9,16,18 EPA and FDA are currently working to update the fish 
consumption advisory to incorporate the most current science regarding the health benefits of 
fish consumption and the risks from methylmercury in fish. In 2011, the Departments of 
Agriculture and Health and Human Services jointly released the 2010 Dietary Guidelines for 
Americans, which recommended that pregnant or breastfeeding women should consume 8–12 
ounces of seafood per week, but avoid consumption of the same high-mercury-containing fish 
identified in EPA and FDA’s advisory.19 More information regarding current fish advisories, and 
links to lists of fish and shellfish typically containing lower levels of mercury, can be found at 
http://water.epa.gov/scitech/swguidance/fishshellfish/fishadvisories/general.cfm#tabs-4. Tribal 
and state-specific fish advisories can be found at http://fishadvisoryonline.epa.gov/General.aspx.  

http://water.epa.gov/scitech/swguidance/fishshellfish/fishadvisories/general.cfm#tabs-4
http://fishadvisoryonline.epa.gov/General.aspx
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Polychlorinated biphenyls  

Polychlorinated biphenyls (PCBs) are a group of persistent chemicals used in electrical 
transformers and capacitors for insulating purposes, in gas pipeline systems as a lubricant, and 
in caulks and other building materials. The manufacture, sale, and use of PCBs were generally 
banned by law in 1979, although EPA regulations have authorized their continued use in certain 
existing electrical equipment. Due to their persistent nature, large reservoirs of previously 
released PCBs remain in the environment. PCBs accumulate in fat tissue, so they are commonly 
found in foods derived from animals. Consumption of fish is a common source of PCB exposure, 
but other foods with lower PCB levels that are consumed more frequently, including meat, 
dairy, and poultry products, also contribute to PCB exposure.20,21 A study by the U.S. 
Department of Agriculture found that levels of certain PCBs in beef and chicken declined 
between 2002 and 2008, while levels in turkey and pork remained relatively constant during 
the same years.22 Exposure to PCBs remains widespread;23,24 however, declining environmental 
levels of PCBs suggest that children today are exposed to lower levels of PCBs compared with 
children in previous generations.20,25-28  

Prenatal exposure to PCBs has been associated with adverse effects on children’s neurological 
development and impaired immune response, primarily through studies of populations that 
consume fish regularly.29-31 Although there is some inconsistency in the epidemiological 
literature, several reviews of the literature have found that the overall evidence supports a 
concern for effects of PCBs on children’s neurological development.29,30,32-34 The Agency for 
Toxic Substances and Disease Registry has determined that “Substantial data suggest that PCBs 
play a role in neurobehavioral alterations observed in newborns and young children of women 
with PCB burdens near background levels.”20 Some studies have also detected associations 
between childhood exposure and adverse health effects.30,35-37 In addition to PCBs, many other 
organochlorine chemicals, including dioxins, dibenzofurans, and organochlorine pesticides, are 
persistent and bioaccumulative and are frequently found in foods derived from animals.38  

Polybrominated diphenyl ethers  

Polybrominated diphenyl ethers (PBDEs) are a class of flame retardants used in many 
applications, including furniture foam, small appliances, and electronic products. PBDEs are 
intended to slow the ignition and rate of fire growth. Of three forms of PBDEs once used in the 
United States (pentaBDE, octaBDE, and decaBDE), only the decaBDE form, used primarily in 
televisions, personal computers, and other electrical appliances, is still in production. 
Manufacturers of decaBDE have agreed to phase out all uses of the chemical by the end of 
2013.39 However, products manufactured prior to the elimination of the pentaBDE and octaBDE 
forms in 2004, and products manufactured prior to the phaseout of decaBDE in 2013, can 
remain in use and contribute to the presence of PBDEs in the environment. 

Like PCBs, PBDEs are persistent in the environment, accumulate in fat tissue, and have been 
found in a variety of foods, including fish, meat, poultry, and dairy products as well as breast 
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milk.40-48 Exposure studies have concluded that the presence of PBDEs in house dust and in 
foods are both important contributors to PBDE exposures for people of all ages, and that 
exposures from house dust are generally greater than those from food.46,47,49-54 PBDE toxicity to 
the developing nervous system as well as endocrine disruption have been identified as areas of 
potential concern.40,55-59  

Bisphenol A  

Bisphenol A (BPA) is an industrial chemical used in the production of epoxy resins used as inner 
liners of metallic food and drink containers to prevent corrosion. BPA is also used in the 
production of polycarbonate plastics that may be used in food and drink containers. The 
primary route of human exposure to BPA is through diet, when BPA migrates from food and 
drink containers, particularly when a container is heated.60-62  

Much of the scientific interest in BPA is related to published research suggesting that BPA may 
be an endocrine disrupting chemical.63,64 Endocrine disruptors act by interfering with the 
biosynthesis, secretion, action, or metabolism of naturally occurring hormones.63-65 BPA has 
demonstrated developmental effects in laboratory animals at high doses, though the effects of 
lower doses similar to typical human exposure levels are the subject of scientific debate.61,66-70 
Based on a critical review of the existing scientific literature, in 2008 the National Toxicology 
Program (NTP) determined that there was “some concern” (the midpoint on a five-level scale 
ranging from “negligible” to “serious”)ii for effects of BPA on the brain, behavior, and prostate 
gland in fetuses, infants, and children.61 Although there is uncertainty regarding the effects in 
humans of BPA at typical exposure levels, several retailers and manufacturers have begun 
phasing out baby products such as bottles and sippy cups that contain BPA. Several states have 
also introduced legislation to ban or limit BPA in food containers and consumer products. 
Additional studies by both government and non-government entities are being conducted to 
provide additional information and address uncertainties about the safety of BPA. 

Phthalates  

Phthalates are a class of chemicals commonly used to increase the flexibility of plastics in a 
wide array of consumer products, and have been used in food packaging.71-74 Some phthalates 
have been found at higher levels in fatty foods such as dairy products, fish, seafood, and oils, 
which are most likely to absorb phthalates.74 Phthalates in a mother’s body can enter her 
breast milk. Ingestion of that breast milk and infant formula containing phthalates may also 
contribute to infant phthalate exposure.75 Certain phthalates are suspected endocrine 
disruptors, and have shown a number of reproductive and developmental effects in laboratory 
animal studies76-85 as well as some reported associations in human epidemiological studies.86-89  

                                                      
ii More information on NTP concern levels is available at http://www.niehs.nih.gov/news/media/questions/sya-bpa.cfm. 

http://www.niehs.nih.gov/news/media/questions/sya-bpa.cfm
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Perfluorochemicals 

Perfluorochemicals (PFCs) are a group of chemicals used in a variety of consumer products, 
including food packaging, and in the production on nonstick coatings on cookware.90,91 Long-
chain PFCs, including perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), 
have already been or will be phased out by the chemical industry by 2015, although the 
persistence of these chemicals means that they will remain in the environment for several years 
despite reductions in emissions. While the routes of human exposure to PFCs are not fully 
understood, two recent studies have identified food consumption as the primary exposure 
pathway.92,93 PFC-treated food-contact packaging, such as microwave popcorn bags, may be a 
source of PFC exposure.94,95 Heating these materials may cause PFCs to migrate into food, or 
into the air where they may be inhaled.iii Meats may also be contaminated with PFCs due to 
exposure of source animals to air, water, and feed contaminated with PFCs.95-97 PFCs have also 
been detected in some plant-based foods.93 Studies in laboratory animals have demonstrated 
reproductive and developmental toxicity of PFCs.98,99 Some human health studies have 
reported associations between prenatal exposure to PFCs and a number of adverse birth 
outcomes,100-103 while other studies have not.104,105  

Perchlorate 

Perchlorate is a naturally occurring and man-made chemical that has been detected in surface 
water and groundwater in the United States.106-109 Perchlorate is used in the manufacture of 
fireworks, explosives, flares, and rocket propellant.107,109 Perchlorate has been detected in 
human breast milk, dairy products, as well as in leafy vegetables and other produce.108,110-115 
Infant formulas have been found to contain perchlorate, and the perchlorate content of the 
formula is increased if it is prepared with perchlorate-contaminated water.116-118 

Exposure to high doses of perchlorate has been shown to inhibit iodide uptake into the thyroid 
gland, thus possibly disrupting the function of the thyroid and potentially leading to a reduction 
in the production of thyroid hormone.107,119,120 Thyroid hormones are particularly important for 
growth and development of the central nervous system in fetuses and infants.121 Due to the 
sensitivities of the developing fetus, perchlorate exposures among pregnant women, especially 
those with preexisting thyroid disorders or iodide deficiency, carry the potential for risk of 
adverse health effects.  

                                                      
iii The U.S. Food and Drug Administration recently worked with several manufacturers to remove grease-proofing 
agents containing C8 perfluorinated compounds from the marketplace. These manufacturers volunteered to stop 
distributing products containing these compounds in interstate commerce for food-contact purposes as of October 
1, 2011. For more information, see 
http://www.fda.gov/Food/FoodIngredientsPackaging/FoodContactSubstancesFCS/ucm308462.htm. 

http://www.fda.gov/Food/FoodIngredientsPackaging/FoodContactSubstancesFCS/ucm308462.htm
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Organophosphate Pesticides  

Agricultural crops are frequently treated with pesticides to control insects and other pests that 
may affect crop growth. Some of the most prevalent classes of pesticides used in growing food 
crops are the carbamates, pyrethroids, and the organophosphates. After crops are harvested, 
they may retain residues of these pesticides. Apples, corn, oranges, rice, and wheat are among 
the agricultural commodities consumed in large amounts by children.  

Organophosphates are one class of pesticides that are of concern for children’s health. 
Examples of organophosphate pesticides include chlorpyrifos, azinphos methyl, methyl 
parathion, and phosmet. These pesticides are frequently applied to many of the foods 
important in children’s diets, and certain organophosphate pesticide residues can be detected 
in small quantities on these foods. Organophosphates can interfere with the proper function of 
the nervous system when exposure is sufficiently high.1,122 Childhood is a period of increased 
vulnerability, because many children may have low capacity to detoxify organophosphate 
pesticides through age 7 years.123 Recent studies have reported an association between 
prenatal organophosphate exposure and childhood attention deficit/hyperactivity disorder 
(ADHD) in U.S. communities with relatively high exposures to organophosphate pesticides,124 as 
well as with exposures found within the general US population.125 Other recent studies have 
reported associations between prenatal organophosphate pesticide exposures and a variety of 
neurodevelopmental deficits in childhood, including reduced IQ, perceptual reasoning, and 
memory.126-128 Since 1999, EPA has imposed restrictions on the use of the organophosphate 
pesticides azinphos methyl, chlorpyrifos, and methyl parathion on certain food crops and 
around the home, due largely to concerns about potential exposures of children.129-131 

The 1996 Food Quality Protection Act required EPA to identify and assess the extent of dietary 
pesticide exposure in the United States, and to determine whether there was a “reasonable 
certainty of no harm” to vulnerable populations including infants and children.132 The U.S. 
Department of Agriculture’s Pesticide Data Program (PDP) provides data annually on pesticide 
residues in food, with a specific focus on foods often consumed by children.133 Other 
researchers have supplemented the PDP with their own analyses. A recent study measured 
pesticide residues in 24-hour duplicate food samples of fruits, vegetables, and juices served to 
children, and found that 14% of the samples contained at least one organophosphate 
pesticide.134 Additional pesticide residue data are available from FDA’s pesticide residue 
monitoring program.135 A number of pesticide residues, along with a variety of other chemicals 
in food, are also measured in FDA’s Total Diet Study.136 When pesticide residue data are 
combined with dietary consumption surveys, it can be possible to estimate pesticide exposure 
from dietary intake.  

Indicator E9 presents the percentage of samples of two fruits and two vegetables analyzed by 
the USDA PDP that have detectable residues of organophosphate pesticides. This indicator 
allows for a general comparison of the frequency of organophosphate detection over time for 
four foods typically consumed by children, although data are not available on each fruit or 
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vegetable for every year.  This indicator has been revised since the publication of America’s 
Children and the Environment, Third Edition (January 2013) to include data for 2010–2017. 
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Indicator E9: Percentage of sampled apples, carrots, grapes, and tomatoes with 
detectable residues of organophosphate pesticides, 1998–2017 

 

Pesticide Data Program 

The U.S. Department of Agriculture (USDA) collects data on pesticide residues in food annually. 
USDA’s Pesticide Data Program (PDP), initiated in 1991, focuses on measuring pesticide 
residues in foods that are important parts of children’s diets, including apples, apple juice, 
bananas, carrots, grapes, green beans, orange juice, peaches, pears, potatoes, and tomatoes.  

Samples are collected from food distribution centers in 10 states across the country.137 The PDP 
has a statistical design in which food samples are randomly selected from the national food 
distribution system and reflect what is typically available to the consumer, including both 
domestic and imported foods.137 Different foods are sampled each year. In its history up to 
2009, the PDP tested for more than 440 different pesticides.133 In 2017, the PDP analyzed fruit 
and vegetables for 512 pesticides and related chemicals. Prior to analysis, the PDP processes 
samples by following the preparations an average individual would use before consuming an 
item. This includes washing fruits and vegetables, as well as removing inedible portions of a 
food item. For example, tomatoes and grapes are washed with the stems and other materials 
removed, while apples are washed and the stems and cores are removed.  

Data Presented in the Indicator 

Indicator E9 displays the percentage of apple, grape, carrot, and tomato samples with 
detectable organophosphate pesticide residues reported by the PDP from 1998–2017. These 
four foods were selected as those that were sampled by the PDP in at least five years from 
1998–2017 and are among the 20 most-consumed foods identified in an analysis by EPA.138 
Other foods not shown here may have either greater or lesser frequencies of organophosphate 
pesticide residue detection than the four foods presented in this indicator.  

The 42 organophosphates that were sampled in every one of the years 1998–2017 are included 
in calculation of the indicator; 95 other organophosphates that were added to or dropped from 
the program in these years are excluded so that the chart represents a consistent set of 
pesticides for all years shown. Some aspects of trends in organophosphate residues could be 
missed by the indicator if any organophosphates other than the 42 considered in the indicator 
had substantial changes in use on the four selected foods during the years 1998–2017. For 
example, a decrease in the percentage of detections of organophosphate residues may reflect 

About the Indicator: Indicator E9 presents the percentage of sampled apples, carrots, grapes, and 
tomatoes that were found to contain detectable residues of organophosphate pesticides from 1998–
2017. These foods were selected because they are frequent components of children’s diets, and 
because data for these foods were available for multiple years. The data are from an analysis of 
pesticide residues in foods conducted annually by the U.S. Department of Agriculture. 
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an actual decrease in the use of organophosphate pesticides, but can definitively represent only 
a decrease in the residues of the 42 OPs included in the indicator; it does not account for 
potential substitution with other organophosphates or other types of pesticides.  

The indicator also defines “detectable” based on the ability to measure residues in the PDP in 
1998, so that introduction of more sensitive measurement techniques over time does not affect 
the indicator and allows for direct comparison of data collected in previous years with those 
collected today. This means that some produce samples analyzed in recent years with improved 
detection technology would, for purposes of indicator calculation, be considered to have non-
detectable organophosphate residues based on comparison with the older, higher limit of 
detection.iv 

The fruits and vegetables shown in this indicator were each sampled in seven to eleven years 
between 1998 and 2017. Gaps in the percentage of residue detections from year to year thus 
represent missing information, rather than an absence of organophosphate residues.  

This indicator is a surrogate for children’s exposure to pesticides in foods: If the frequency of 
detectable levels of pesticides in foods decreases, it is likely that exposures will decrease. 
However, the indicator does not account for many additional factors that affect the risk to 
children. For example, some organophosphates pose greater risks to children than others do, 
and residues on some foods may pose greater risks than residues on other foods due to 
differences in amounts consumed. The indicator also does not distinguish between residue 
levels that are barely detectable and those that are much higher, which would pose a greater 
concern for children’s health. Finally, exposures to organophosphate pesticides may also occur 
by pathways other than the diet, such as ingestion of pesticides present in house dust and 
drinking water. 

                                                      
iv An alternate analysis of the data that considered all detectable residues, without holding the limit of detection 
constant at 1998 levels, resulted in percentages of food samples with detectable organophosphate pesticide 
residues very similar to those shown in the indicator. 
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 In 1999, 81% of sampled apples had detectable organophosphate pesticide residues. In 
2016, 6% had detectable residues. 

Data characterization 
- Data for this indicator are obtained from a U.S. Department of Agriculture program that measures 

pesticide residues in food samples collected from 10 states. 
- Food samples are randomly selected from the national food distribution system and reflect what is 

typically available to the consumer. 
- The types of foods sampled change over time; so, for example, data for pesticide residues on apples are 

not available every year. 
- The indicator is calculated using the measurement sensitivity as of 1998 for each year shown; more 

sensitive measurement techniques have been incorporated over time. 
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 In 2000, 10% of sampled carrots had detectable organophosphate pesticide residues. In 
2014, 5% had detectable residues.  

 In 2000, 21% of sampled grapes had detectable organophosphate pesticide residues. In 
2016, less than 1% had detectable residues.  

 In 1998, 37% of sampled tomatoes had detectable organophosphate pesticide residues. In 
2016, 2% had detectable residues. 
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