

Options for Simplifying MOVES Onroad Source Types and Ramps

David Brzezinski and Darrell Sonntag FACA MOVES Review Work Group September 14, 2016

Why Simplify MOVES?

- MOVES has become more complex to fulfill needs of users
 - e.g. additional pollutants, additional detail in vehicle technologies, fuels, and vehicle activity
- However, complexity comes at a cost, including:
 - Additional inputs, and room for error
 - More difficult to update with new data
 - Less transparency
 - Increased processing/run time
- This presentation contains two suggestions we believe could simplify the model without a significant loss of accuracy
 - EPA seeking feedback from FACA
 - EPA has not made any final decisions

Suggestion #1: Reduce the Number of Source Use Types

MOVES Source Types

- MOVES source types are structured to correspond to activity information that is organized differently than the EPA regulatory classifications.
- All vehicles within a source type are assumed, in general, to have the same activity and age distributions.

Source Type ID	MOVES Source Type
11	Motorcycle
21	Passenger Car
31	Passenger Truck
32	Light Commercial Truck
41	Intercity Bus
42	Transit Bus
43	School Bus
51	Refuse Truck
52	Single Unit Short-haul Truck
53	Single Unit Long-haul Truck
54	Motor Home
61	Combination Short-haul Truck
62	Combination Long-haul Truck

MOVES Regulatory Classes

- MOVES emission rates are by regulatory class.
- Each source use type is a combination of the regulatory classes.
- Altering source types does not affect regulatory class emission rates.

regClassID	Name	Description		
10	MC	Motorcycles		
20	LDV	Light Duty Vehicles		
30	LDT	Light Duty Trucks		
40	LHD <= 10k	Class 2b Trucks with 2 Axles and 4		
		Tires (8,500 lbs < GVWR <= 10,000 lbs)		
41	LHD <= 14k	Class 2b Trucks with 2 Axles and at		
		least 6 Tires or Class 3 Trucks (8,500		
		lbs < GVWR <= 14,000 lbs)		
42	LHD45	Class 4 and 5 Trucks (14,000 lbs <		
		GVWR <= 19,500 lbs)		
46	MHD67	Class 6 and 7 Trucks (19,500 lbs <		
		GVWR <= 33,000 lbs)		
47	HHD8	Class 8a and 8b Trucks (GVWR >		
		33,000 lbs)		
48	Urban Bus	Urban Bus (see CFR Sec 86.091_2)		

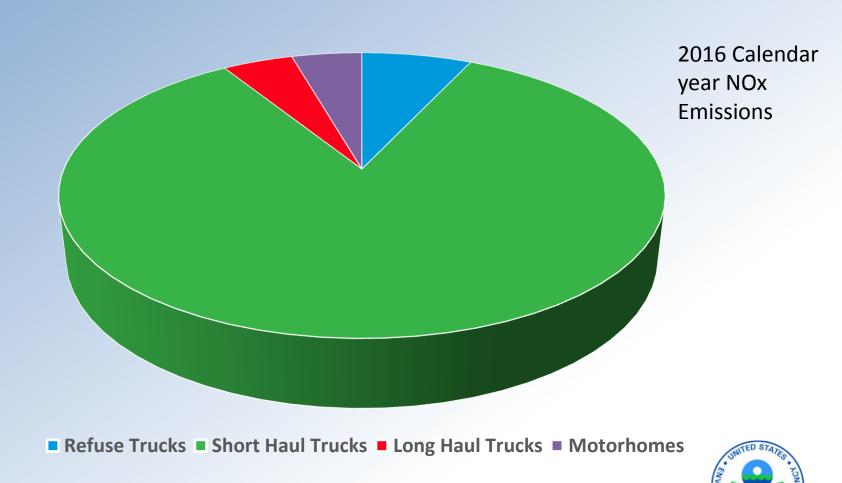
Source Type Data

- EPA defaults were originally developed using the Vehicle In-Use Survey (VIUS), which has since been discontinued.
- States are asked to distribute their activity and population by source type.
- However, states have found it difficult to split the available population and activity data into the current source type groupings.
 - Personal versus commercial use.
 - Short haul versus long haul use.
 - Specialized vocations (i.e., refuse truck).

Combining Source Types

- EPA is suggesting to combine some source types to reduce the number of needed inputs.
- Because MOVES performance (time to run) is affected by the number of source types simulated, combining source types should improve model performance.

Source Type ID	MOVES Source Type
11	Motorcycle
21	Passenger Car
31	Passenger Truck
32	Light Commercial Truck
41	Intercity Bus
42	Transit Bus
43	School Bus
51	Refuse Truck
52	Single Unit Short-haul Truck
53	Single Unit Long-haul Truck
54	Motor Home
61	Combination Short-haul Truck
62	Combination Long-haul Truck


Source Type Emissions

- The emissions of trucks are a function of their emission standards classification (regulatory class).
- Each source type emission rate is calculated as a weighted average of the regulatory class rates.
 - i.e., Light commercial trucks include trucks certified as light trucks and as heavy duty trucks.
- Combining source types would preserve the underlying weighting of the regulatory classes.
- Overall fleet emissions should not be affected by combining source types when default fractions are used.

Passenger and Commercial Light Trucks

- MOVES2014a has separate activity and emissions for the passenger and light commercial trucks (4 tire, 2 axle).
- It is difficult for states to allocate their truck population and activity to these two categories.
 - Light trucks are often used for both personal and commercial purposes.
- Note: combining light trucks will still not resolve problems with separating passenger cars from trucks.
 - Some light trucks and cars can only be identified by VIN decoding.

Single Unit Truck Source Types

Short and Long Haul Single-Unit Trucks

- MOVES splits single unit trucks and combination trucks into two activity types:
 - Long haul (trucks that travel more than 200 miles each day)
 - Short haul (all trucks that are not long haul)
- It is difficult for states to allocate their truck population and activity to these two categories.
 - Some trucks are used for both long and short haul.
 - Economic conditions may significantly affect these categories.

Motorhomes and Refuse Trucks

- MOVES has separate activity for motorhomes and refuse trucks.
 - Both motorhomes and refuse trucks emissions are a combination of the regulatory classes used for single unit trucks.
 - Refuse trucks have their own driving schedules for low speed (workday) operation.
- It is difficult for states to allocate their truck population and activity to these two categories.
 - It is difficult to track specific motorhome activity.
 - It is difficult to separate refuse truck operations from other truck activity measurements.

Combining Motorhomes and Refuse Trucks into Single-Unit Trucks

- Both do not have to be combined with single unit trucks.
- Refuse trucks are likely to have local population data and have significantly different activity than other single-unit trucks.
- It would become more difficult to estimate specific emissions from motorhome and refuse trucks.
 - With some difficulty and guidance, specific emissions for motorhome and refuse trucks could still be determined using MOVES.

Short and Long Haul Combination Trucks

- MOVES splits combination trucks into two activity types:
 - Long haul (trucks that travel more than 200 miles each day)
 - Short haul (all trucks that are not long haul)
- The short/long haul split is currently used in MOVES to estimate hotelling emissions from combination trucks.
- It is difficult for states to allocate their truck population and activity to these two categories.
 - Some trucks are used for both long and short haul.
 - Economic conditions may significantly affect these categories.

Combination Truck Hotelling

- Only combination trucks are assumed to have hotelling activity.
- Removal of the short/long haul distinction for combination trucks would require a new mechanism for determining the appropriate amount of hotelling hours for a location.
 - Current method is the source of much criticism.
 - Changes in the current method are likely.

Overall Effects of Changing Source Types

- Would require significant changes to MOVES default data.
 - Consolidate activity across categories.
 - Consolidate regulatory class fractions.
 - Mix of sub-classes would not vary by location.
- Should not significantly affect the overall emission inventory estimate.
 - Many areas use EPA default source type splits.
 - Custom user inputs could allow output for vehicle subclasses when they are needed.

Should EPA Simplify the Source Type Classifications?

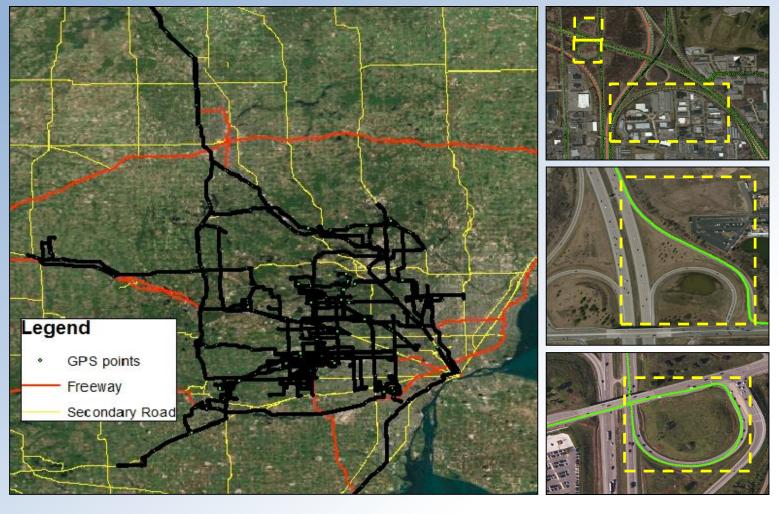
- Are there technical/policy reasons to continue to:
 - model passenger and commercial light trucks separately?
 - model short/long haul single unit trucks separately?
 - model motorhomes and/or refuse trucks separately?
 - model short and long haul combination trucks separately?

SUGGESTION #2: REMOVE FREEWAY RAMPS FROM NATIONAL AND COUNTY-SCALE

Background: Project-Scale

- Finest level of modeling in MOVES
- Users specify information for Individual roadway links, including:
 - Traffic volume
 - Operating mode distributions, driving cycles, or average speed
- Users can input separate driving behavior for ramps by modeling ramps as separate links

Background: Ramps in National and County-Scale


- Ramp activity and emissions are modeled separately at county and national-scale based on the assumption that vehicle behavior and emissions are significantly different on ramps than freeway conditions
- Ramp Fractions (User Input)
 - Used to estimate the percent of time vehicles spend on ramps in Rural and Urban Restricted Access roads (roadtypeID 2 and 4)
 - National default ramp fraction derived from MOBILE6 value (8%)
- Ramp Operating Mode Distributions (Default data)
 - Varies according to the average speed of the roadtypeID 2 and 4
 - Used for estimating the behavior of ramp driving
 - Ramp operating mode distributions are based on engineering judgment
 - Contain high percentage of high power, high acceleration modes

EPA Detroit Light-duty vehicle Ramp Study

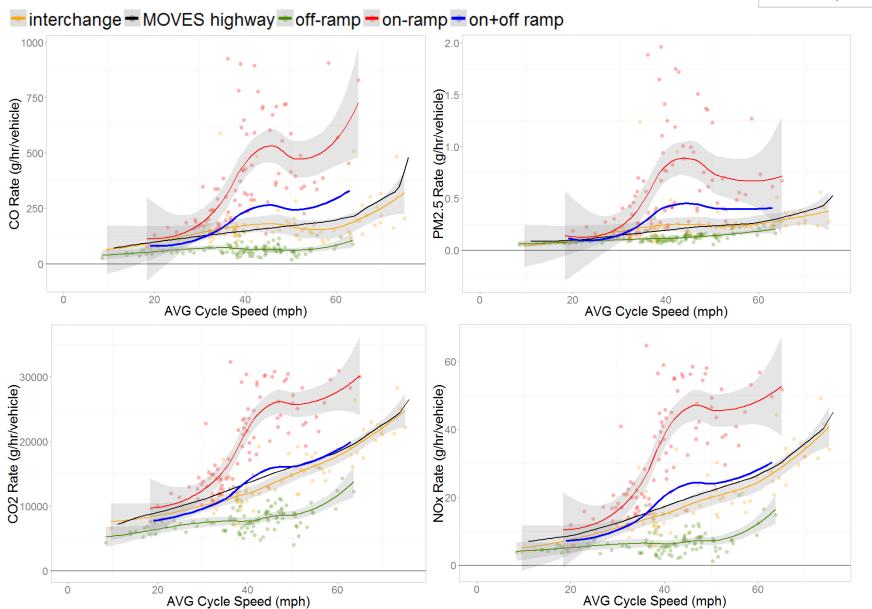
- Conducted study in 2014 to evaluate ramp activity and default MOVES ramp data
 - Not available for MOVES2014
- 10 vehicles, 10 drivers
 - Commuting trips, Aug. to Oct., 2012, in Metropolitan Detroit
 - In total of 173 hours data, in 5 Hz
- Portable Activity Measurement System (PAMS)
 - On-Board Diagnostic (OBD) module
 - time, engine rpm, vehicle speed, air flow rate ...
 - Global Positioning System (GPS) module.
 - · vehicle speed, latitude, longitude ...

NO	Year	Make	Series	Body	Туре	Reg Class
1	2008	Chevrolet	Malibu LTZ	4dr Sedan	CAR	LDV
2	2009	Buick	Lucerne CXL	4dr Sedan	CAR	LDV
3	2008	GMC	Acadia SLT(1) FWD	4dr Cab/Sport Utility	MPV	LDT34
4	2009	Chevrolet	Impala LT Sedan	4dr Sedan	CAR	LDV
5	2008	Pontiac	Grand Prix Sedan	4dr Sedan	CAR	LDV
6	2009	Ford	Fusion SE	4dr Sedan	CAR	LDV
7	2009	Ford	Fusion SE	4dr Sedan	CAR	LDV
8	2009	Ford	Fusion SEL	4dr Sedan	CAR	LDV
9	2007	Buick	Rendezvous 2WD	4dr Cab / Sport Utility	MPV	LDT2
10	2009	Chevrolet	HHR	4dr Cab / Sport Utility	MPV	LDT2

Ramp Data Extraction from ArcGIS Total # of Ramp Traces: 270

LDV Emission Rate Evaluation

- Calculated Operating Mode Distributions for each ramp from the PAMS data
- Used MOVES in project-level to obtain emission rate of LDV for each ramp (on-ramp, off-ramp, and interchange)
- Input data:
 - Operating Mode Distributions (PAMS)
 - Region: Wayne County (Detroit)
 - Time: 5:00-6:00 PM, July, 2015
 - Source type: passenger car (source type ID = 21)
 - Age distribution: 2015 national default
 - Pollutants: CO, PM_{2.5}, NOx, CO₂



LDV emission rates: Average of On-ramp and off-ramp emission rates ≈ MOVES highway emission rates

of ramp traces: 270

• on-ramp: 91

Initial Results

- Average of LDV On-ramp and off-ramp emission rates ≈ MOVES highway emission rates
 - Similar trend observed for heavy-duty transit buses
- Current ramp operating mode distributions in MOVES2014 are too aggressive
 - Too much time spend in high power, high acceleration operating modes compared to real-world ramps
 - Do not account for less acceleration noted on off-ramp and interchanges
 - Amount of braking appears reasonable
- We can simplify and improve the accuracy of MOVES by removing ramps from national and county-scale for all vehicle types
 - Would no longer require users to provide ramp fraction in county-s

Evaluation of Removing Ramps

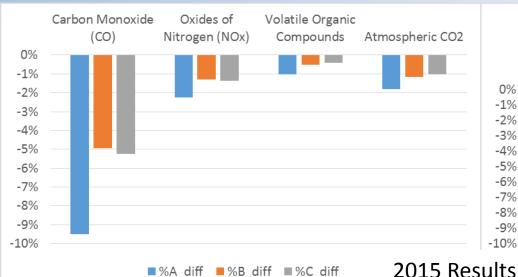
- We evaluated the impact of removing ramps using 60 highway trips from Detroit LD study
 - 60 highway trips, each contains on-ramp and off-ramp
 - 15 hours, 871 miles

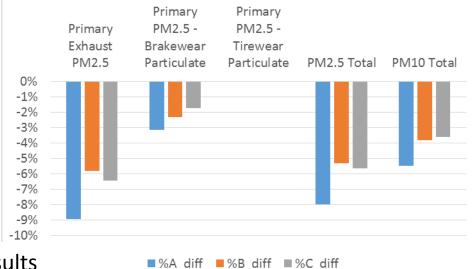
Evaluation of Removing Ramps (2)

Developed MOVES inputs from the 60 trip data in 2 scenarios:

- Project-Level
 - Accurate representation of the complete 60-trips in MOVES
- County-Scale (Ramps = 0)
 - Highway average speed (Ramps + Highway)
 - Ramp fraction = 0
 - Use MOVES default highway cycles

Results:


Difference between County- scale (Remove ramps) and	СО	NOx	CO2	PM2.5
Project-Level	-1.67%	-0.53%	-0.10%	-3.17%


- Difference expected between using project-mode and county-scale
- However, after removing ramps in county-scale, the results are more comparable

What's the impact of removing ramps from a typical urban county?

- Conducted MOVES runs for 3 urban counties (A, B, and C) in 2011-2030
- Overall impact of removing ramps on 3 counties
 - 0.5-3% reductions in NOx, VOC, and CO2
 - 2-3% reductions in brake wear PM, 6-9% reductions in PM2.5 exhaust,
 - 4-12% in CO
- Larger decreases observed in the 3-county analysis than the 60-trip analysis
 - Default MOVES2014 ramp operating mode distributions are more aggressive than activity measured on ramps in the EPA Detroit study

Summary

- Remove Ramps from County and National-scale
 - Increased emissions from on-ramps are largely offset by the decrease in emissions from off-ramps, which are not properly accounted for in MOVES
 - Evaluation data (60-trip analysis) confirms that removing ramps improves accuracy in light-duty exhaust emissions
 - Removing ramps for all vehicle types will lead to minor decrease in emissions, including brake wear
- Maintain Ramps in Project-scale
 - Differences between individual ramps, especially between on-ramps, off-ramps, and highway links are important
 - Ramps should be treated as individual links
 - We intend to provide light-duty op-mode distributions based on the Detroit ramp study

Feedback?

- Are there any specific examples why users need ramp output at the county-scale?
- Any input on the recommendation for projectmode?

